

 Navigation

 	
 index

 	seat-docs latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/seat-docs/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/seat-docs/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	seat-docs latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 changelogs/eveapi.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

eveapi change logs

Generated with: git log --oneline --decorate

1.0.12

56c8444 (tag: 1.0.12) Version Bump
00d8697 Catch the PhealException to handle XML parsing issues
ab00f40 Temporarily fix eveseat/seat#71 by catching the PhealException
20f00e9 Mark jobs as done in the case of errors.

1.0.11

ab985bd (tag: 1.0.11) Version Bump
d4d4f50 Dont disable on HTTP 403. Too many false positives.

1.0.10

3a5c6cf (tag: 1.0.10) Version Bump
6995d17 Fix eveseat/seat#52 by searching by refTypeID to update

1.0.9

ab271fa (tag: 1.0.9) Version Bump
c285f7d Update copyright
e741457 Code style fixes

1.0.8

eac8500 (tag: 1.0.8) Version Bump
83cb845 Fix eveseat/seat#37

1.0.7

f816c1d (tag: 1.0.7) Version Bump
dd72510 Default to an Unknown system
1e41a94 Default to the solarsystemid instead of null
da049c7 Fix eveseat/seat#8 by checking if the body exists before insert
ff48a73 Add the CustomsOfficeLocations API updater
601eb36 Specify phealng version with a ~
a08e970 Remove specific minor version.
a93f674 Bump minimum PHP version

1.0.6

74dcedb (tag: 1.0.6) Version Bump
fb2e473 Set composer versions using ~
f9fdfb5 Merge pull request #4 from warlof/shareholders
fd53795 Keep track of the closest distance.
9840802 Provide a fix to eveseat/seat issue #21
69e8c3b Merge pull request #3 from warlof/contactslabels
173f57c Provide a fix to eveseat/seat issue #5

1.0.5

03101f9 (tag: 1.0.5) Version Bump
5562f03 Add corporation bookmarks updater
17c7c41 Resolve the closest celestials for bookmarks
c7bef60 Only resolve to items that have names
856f66f Add channel relations

1.0.4

7be3801 (tag: 1.0.4) Version Bump
6302a17 Handle some HTTP response codes for expired keys

1.0.3

53c168f (tag: 1.0.3) Add check to job_ids and version bump

1.0.2

dc612d9 (tag: 1.0.2) Version Bump
a8bcd62 Compile a sane user agent for eveapi xml requests
6eced6a Change - to _
05378b6 Catch the ConnectionException when checking keys
fa6bcf6 Decrement the counters when checking key types
78441a9 Dont increment past the limit
ff3df0a Add ability to check if the EVE XMLAPI is down.
3ec7598 Add primary key
f954257 Add primary key.

1.0.1

f4d133a (tag: 1.0.1) Version Bump
6db0044 Update to Pheal2.3 and use the Guzzle fetcher
4354a90 Reload the info relationship on a key to update accessMask
47ddd2b Update README.md

1.0.0

a49216a (tag: 1.0.0) Version Bump

1.0-pre-alpha

debc408 (tag: 1.0-pre-alpha) Update README
3ab3bb9 Populate $fillable properties to include corpIDs
7577325 Small refactor to reduce code duplication
403b894 Add method to get a corporationID
f116fbe Fix up testing by allowing the access bit to be set in the constructor
18e3967 Actually set the configured instance
18522f4 Load access definitions directly from the config
d9c3d8f Resolve PhealNG out of the IoC
3e75254 Increase field size
cc1823d Add User relationship
2c3f4a6 Change Case
411e46c Refactor Models into categorized namespaces
0940ea9 Make Jobs aware of the Pheal\ConnectionException
acf0a53 Write a log entry if the JobTracker lookup failed
bc9b4ce Dont try and get Courier contracts items
10f496a Dont type hint the exception type, as any exception should get here.
d1d8555 Cater for the strange AccountStatus call access.
318de50 Rate Limit requests p/s to remain under 30 p/s
dfcd9c6 Jobs can now be assigned to a queue for priority.
5b8cd0b Prevent an array_merge() attempt on NULL
31f1af0 Allow for granular update worker control
ca9ff3e Collapse KillMail Attacker, Detail and Items tables.
16e75b5 Split configs up and update the Service Provider
1639d2b Move load_workers to the JobTracker Trait
827f34a Small refactor to remove duplicate code starting workers.
66bb167 Code Style fixes
9701167 Log failed jobs to the general log.
5c76f57 Fix Line Seperator to LF
e9eb32d Add sample XML
2712ac3 Remove unnecessary leading \
acd5c1b Add Corporation WalletTransaction Update worker
42e8355 Add more transaction uniqueness
b4b5c01 Add missing accountKey arg
c27e7d3 Add Corporation Wallet Journal Update worker
fa876b7 Add primary key for updates
0117329 Add Corporation Titles Update worker
30162a2 Add StarbaseList and Detail Update workers
821b63b Add Corporation Standing Update worker
ccfa8b6 Add Corporation Shareholders Update worker
6478410 Add Corporation MemberSecurityLog Update worker
84cabb4 Add Corporation MemberTracking Update worker
f860322 Only set titles if the API response had some
eac6568 Add Corporation MemberSecurity Update Worker
92cb2a0 Add Corporation MemberMedals Update worker
adb06db Add Corporation Medals Update worker
799246d Add Corporation Market Order Update worker
91b9b8f Add Corporation KillMail Update worker
422cc28 Add Corporation IndustryJobs Update worker
a8c58c5 Add Corporation Customs Offices Update worker
2bfb7cc Add Corporation Sheet Update worker
e91a78f Add Corporation Contract/Items Update worker
c8ba721 Add Corporation ContactList update worker
8042cb9 Update comment
9876ed2 Add Corporation Locations Update worker
4949d96 Add method to find celestials closest to an x,y,z
d7f3844 Add the Corporation Assets Update worker
367d83d Add Corporation Account Balance worker
85b7ed4 Slightly increase possible value
a02f4f6 Add helper to determine corpID for corp keys
942ee79 Get a fresh instance of the model as it just updated
aaa4e2b Use relation to get type instead of a new query
0cef16e Code Style Fixes
3127104 Optimize a few updater workers, fix comments and styling
ed350b6 Check if api_info is available first.
3aabc11 Add EVEAPI error handling
e38f15a Check if the info relation exists before using
eda56f2 Add test for accessMask checking
efa6bd3 Implement CanCheck to check API key accessmasks
076a608 Improve readability of error output
c327e62 Bump dependencies to stable versions only
d3690c0 Update class comments
d377c46 Move list of update classes to a config file
55c3d31 Fixup tests since the phealng optimization
d0f93b4 Optimize PhealNG usage.
6a0182e Add Bookmarks Update worker
5cc2f16 Update Badges
72f4a40 Update License
62abf5d Add Chat Channels Update worker
b1c1890 Fix reference to transactions element
9d17c5e Add Utils test
effef96 Update License
55a0f70 Use 'hash' as primary key
9a3a1e3 Add Wallet Transactions Update worker
8149688 Add the Wallet Journal update worker
7fb983f Add Calendar Events Update worker
fc553d5 Add Standings Update worker
b06989c Add SkillQueue Update worker
faf93b0 Add SkillInTraining Update worker
4ca03ab Add Character Research Update worker
532b75b Add Character Market Orders update worker
4d2baeb Add Planetary Related Update workers
9f82357 Add Character Notification Update workers
985ec34 Add character mailing lists update worker
9a1da2f Add MailMessage Update worker
fdddcec Increase size of output column
81bfd5e Add supporting files for Char KillMail Updater
ea775fd Add Character KillMail Update worker
53b3b92 Add CharacterInfo Update worker
259f2c6 Add Industry Update worker
4cb4c79 Fix a few small keying issues
75718fe Add Contract and ContractItems update workers
bb8fdbd Add Contact Notifications update worker
ae67622 Add ContactList update worker
576e022 Add complete CharacterUpdate worker
77ed8ca Bump default cURL timeout to 60s
6d15331 Fix issue causing member corp allianceID to be 0
08ef47a Add the Character AssetsList Updater
0a0f959 Add AccountBalance Update worker
5a65242 Fix up the relationship keys
b12f246 Add a relationship between API Keys and Characters
f20b464 Prevent an errored job from being marked as Done
13ed536 Add AccountStatus sample XML
b26fcf2 Add AccountStatus Updater
93952a3 Update Checker to queue jobs based on key type
c61dd09 Style and docblock fixes
db60993 Abstract some of the repeated Trait usage
7124c77 Constrain the character removals to the key
b5f2f61 Remove unused PhealException
b0063c7 Start the Key pickup worker
3e97b6c Return the object when setting the key/vcode
99081b7 Group API Tests to be easily excluded by PHPUnit
207a33d Add the Job Container to resolve Job information
598ed88 Remove unused DispatchesJobs trait
93eec75 Add the API CallList Updater and Test
79f4a16 Add Code Climate
f881d47 Update README
aafe40f Update travis-ci to include newer PHP and HHVM
d21e557 Add Travis-CI config
3da6a8e Add tests for the currently implemented calls
21a3f2d CS Fixes
82c0f51 Add Test to validate ServerStatus API Response
1ee3bb0 Small namespace change for the test
21be320 Start Testing! :)
6d0ed85 Throw an exception if an api key is empty
52ad9b7 Add Map Jumps Update worker
6c4bc86 Add Map Kills update worker
4720ae1 Fix job to actually update if something changes too
6d39cb2 Update Models defining new primary keys
377428b Modify Migration Indexes
c753ad1 Add Map Sovereignty Update workers
187b336 Add AllianceList update
8fff877 Add ConquerableStationList updater
a75c66e Add eve/errorlist API call
b02dc11 Add Eve RefTypes API Call
9c61de8 Move Jobs error handling to a trait
8bc8a64 Implement the Job Tracker
0d0ab93 Add a job manager
ca0a6d7 Add generated docblocks
086ebb5 Complete ServerStatus Update
8991564 Start core logic and add server status checker
b6991b9 Start a few things to test job workers
40d4948 Start composer package
af4f12f first commit

 © Copyright 2016.
 Created using Sphinx 1.3.5.

changelogs/web.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

web change logs

Generated with: git log --oneline --decorate

1.0.23

954c178 (tag: 1.0.23) Version Bump
498b868 Fix eveseat/seat#70 by ignoring the current users email in the constraint
8422602 Fix eveseat/seat#57 by adding missing language strings

1.0.22

cc8019a (tag: 1.0.22) Version Bump
0f02f88 Fix eveseat/seat#59 by adding a unique validation constraint
c69fa2f Add button to easily re-enable keys

1.0.21

70783d8 (tag: 1.0.21) Version Bump
c9188b7 Fix eveseat/seat#60 by using `firstOrNew` instead of create
98b9679 Fix eveseat/seat#51 by always showing the pagination

1.0.20

e2056a1 (tag: 1.0.20) Version Bump
92986b7 Remove pcntl requirement
ad5f515 Merge pull request #21 from warlof/french

1.0.19

f212c78 (tag: 1.0.19) Version Bump
d5376f9 Update Copyright
39c8243 Subclass the bouncers
afb0be5 Add a People Groups feature
17c4f3e Set queue status update time via configuration
5d30ff0 Fix eveseat/seat#48 by adding data-order attributes
530c268 Add a check for loaded modules and php version
c84baaa Merge pull request #18 from warlof/ticket38
e4e1fd0 Merge pull request #20 from warlof/ticket43
94e470d (origin/pr/18) Fix wishlist #38 eveseat/seat#38
21a3bb3 (origin/pr/20) Fix issue eveseat/seat issues#43 - Update calc formula - Adding ceil in order to get round item unit (ccp like)
274409b Use league/csv to parse CSV's instead of the homebrew
741755d Remove unnecessary re-fetch of model data
b7ff1a2 Fix eveseat/seat#39 by changing ownership of an existing key.
8fcc13e Remove footer. Datatables will count the keys
b357826 Code formatting fixes
d5f58de Merge pull request #19 from Cynabal/master
7a78e2f Merge pull request #17 from warlof/french
9d2ab0f (origin/pr/19) Update seat.php
86da25f (origin/pr/17) New translation according to v1.0.18

1.0.18

69239bf (tag: 1.0.18) Version Bump
33470ce Allow packages to hook into corporation menus
24c9f1d Only attempt to read package menus if they are defined
3b7ecad Allow packages to hook into character menus
bac4a6e Add Datatables to starbase summary

1.0.17

ec9d5c8 (tag: 1.0.17) Version Bump
aaaac36 Fix eveseat/seat#29
6de7e1e Add Datatables for tables.

1.0.16

075784c (tag: 1.0.16) Version Bump
b688c4f Add planet type icons
54ccdec Add corporation Pocos view

1.0.15

bbede7b (tag: 1.0.15) Version Bump
63f308a Load starbase modules via Ajax calls
c0f48df Display page render time

1.0.14

3f8587c (tag: 1.0.14) Version Bump
14d87b4 Merge pull request #13 from warlof/ticket5
d412b7e Excluse Towers themselves from module views
98a8e19 Use a macro for progressbar generation
c0e9ce3 Remove unused variables
22932b4 Refactor Starbase views mostly for performance reasons
0cefaac fix issue #5 about labels display on neutral and negative standing

1.0.13

936e8b8 (tag: 1.0.13) Fix a assets check, add missing string and Version Bump

1.0.12

7bdbf10 (tag: 1.0.12) Version Bump
6c365ad Specify versions with ~
3f604e2 Merge pull request #11 from warlof/french
c1f4657 add new translations according to recent commits (for 1.0.12)
ed485b3 Move strontium usage to its own string for easier translation
64a6f86 Take into account bonusses silo/coupling array capacities
488fd3b Merge pull request #8 from warlof/unknown-item
cd66a8a Add Starbase details views
f9dc521 fix issue #9
9f74d1c Add more details about starbases
7e67371 First pass at adding starbase views
9496188 Merge pull request #6 from warlof/french
2491e69 Translate SeAT in french according to 1.0.11
f5fa4e3 Show timestampts and paginate wallet info
c6b4311 Fix eveseat/seat#15

1.0.11

ca67d0a (tag: 1.0.11) Version Bump
78da260 Add ability to view corporation bookmarks
eda1260 Add ability to view character bookmarks
8e1285e Add ability to view character channels

1.0.10

5aebf1e (tag: 1.0.10) Allow French to be chosen and Version Bump
dae1719 Merge pull request #5 from warlof/french
6e827ae Translate SeAT in french according to 1.0.9

1.0.9

9e4cd79 (tag: 1.0.9) Add account info check and Version Bump
bfaabe2 Merge pull request #4 from freedenizen/master
d802b98 add updated_at timestamps to Character and Corporation Sheet summary

1.0.8

0ece0ce (tag: 1.0.8) Version Bump
616067c Check if we have data before attempting to display
99c14a3 Fix eveseat/seat#10

1.0.7

660b6fa (tag: 1.0.7) Version Bump
b65aa7e Remove URI scheme
639b3fb Add missing language definition for view

1.0.6

2042098 (tag: 1.0.6) Version Bump
83a7ea8 Add Afrikaans language support
0039045 Add ability to select a preferred language
30a71e6 Update langauge strings
2956a15 Resolve contract issuerID's to names
36ea925 Apply number() to a few values
40e5c24 Add ability to view profile login/logout history
a8e93d7 Add for user password resets
81682c4 Add recipient info into the mail timeline
cc141c8 Add id-to-name helper
6999007 Add X-CSRF Token for ajax calls
6915fec Add the mail timeline view
5ade565 Add ability to view character email

1.0.5

df6ddae (tag: 1.0.5) Version Bump
14bc397 Add ability to set an admin contact
5e6498b Add links to external services
f819124 Show output of jobs
070c232 Show eveapi errors status
80775e2 Allows superusers to transfer keys to other owners

1.0.4

4aab9b8 (tag: 1.0.4) Version Bump

1.0.3

bc8e6eb (tag: 1.0.3) Start something for a dashboard
0238e32 Update README.md
73d415d Add optional Google Two-Factor TOTP support.
84723ff Merge pull request #3 from Cynabal/patch-1
2d98ead Update add.blade.php

1.0.2

7fcac57 (tag: 1.0.2) Version Bump
020c885 Add notifications version
f9fdaf6 Dont force packages to set a permission
5d1bb8c Add email notifications setting and new email templates
4bade0d Auto update copyright year
9eba303 Add WebUI to manage schedules

1.0.1

4598815 (tag: 1.0.1) Version Bump
2c683ba Dont force a package to have a sub-menu
6c13e32 Resolve menu routes in the sidebar view.
e8f3237 Add api version display
0f6d4ec First pass in allowing packages to add menu items
fe117ce Add hasRole() method
be056a9 Fix #2

1.0.0

e885f07 (tag: 1.0.0) Style fixes and version Bump
fddc5ba Add SeAT Settings Page with registration toggle
30b2b9c Add more settings options
bb6e8ed Add ability to change SeAT theme.
8dbb713 Read skin ccs filename from settings()
67d823c Read some values from settings
91872a1 Remove unused HTML and fix brand route
3ec66f3 Reduce icon size and add corp icons
e78c62f Add more complete corp security views
13f6c9d Add ability to view corp member tracking

1.0-pre-alpha

6332cd7 (tag: 1.0-pre-alpha) Update README
a48340a Login using names instead of emails
2dfdc27 Add ability to view corp wallet transactions
06c4741 Add ability to view corp wallet journals
97547a7 Add ability to view corp standings
1a825e0 Add ability to view corp market orders
bab5d6a Add ability to view corp killmails
26923cc Add ability to view corporation industry jobs
fc43803 Add ability to view corporation contracts
a386881 Add ability to view corp contacts
110b142 Add ability to view corporation assets
2b9dd85 Add ability to view corp summary
0bf5bdc First work on corporation views.
5114d4f Resolve a trait method conflict
5eaffdc Add ability to mass import keys via CSV files
17feb08 Add ability to view character standings
797c9f0 Add ability to view character research info
771ee34 Add ability to view character PI
0fcb7de Add ability to view character market orders
a6b7ac6 Add ability to view character industry
c020c36 Small UI refactor to make it cleaner
0d5e18a Add character contract view
f36e34b Add ability to view character killmails
45e8dd5 Link to character details
08d1d48 Add character contacts view
dc3a396 Add character calendar view
085368f Add character notifications view
04ca0ee Add filter rules.
ccc5ad2 Add Character Assets View
c748d29 Add table-responsive
9aaa7ae Add Character Mail View
f046272 Add Character Wallet Transaction View
1ae69e0 Add Character Wallet Journal View
814a95d Rename method from EveRepository
5d9cfc1 Add Implants, Jump Fatigue and Clone info
ac83d39 Minor formatting changes
3631b89 Re-arrange character details layout
e23a153 Add more character sheet info and shuffle a few things around
c414bb2 Create a base view for character detail views
d3fc448 Add Character Skills view
51caf72 Add Security logging and viewing abilities
7debd56 Start the Character Viewer
5bfbed0 Small responsive fixes
4cf03ed Add All Characters View
51ccf46 Add hasAny()
12e05de Split permissions into categories
50a68ab Add a view into the Job Queue as well as some management
0da342b Add live queue status updates
b9df4c4 Fix cases where keys with missing info would throw errors
9faffab Remove usage of the Redirect Facade
2250508 Add ability to manually start a job update
3e34b3e Add key detail viewer and introduce the keybouncer
85bf567 Add ability ti list and delete API keys
2fe3d76 Add lazy image loading support
ee21c49 Style fixes
1de991a Add ability to add new Api Keys
358ba7f Make sidebar permissions aware
41190e6 Introduce the Bouncer and hes Clipboard 🚪
c2edc6b Use auth() helper instead of Auth Facade
2a864dc Fix some inconsistency with edit/updater user lang
e473bba Swap input for has to read better
5e65509 Allow for users to be quick added
89ca4e1 Allow for the account status to be filled
05e6019 Resize grid to match other configuration views
fdeb2cc Rename menu entry to match page title
7a03e34 Complete the impersonation feature
6195979 Add ability to delete users
0675ef9 Cleanup when a user is deleted
4c58659 Allow for users to be modified
a3f1882 Add a basic summary of user roles and affiliations
f03f872 Localize flash messages on perm/role changes
679b020 Fix typo in affiliation form request validator
2e656a8 First iteration of Acl methods and web structuring.
e8c4343 Highlight submenu items based on URL match
b6cd2b9 Have the sidebar honor the Locale
1f91ef0 Add view composer to build the sidebar menu
3425769 Add a User view composer
3e72326 Restructure Service Provider
4aa96f5 Fix duplicate 'reset' translation key
1160deb Use class property
22c7747 Add password reset functionality
9377f67 Add README
f16a71d Start web interface
3f15794 Initial commit

 © Copyright 2016.
 Created using Sphinx 1.3.5.

setup_guides/ubuntu1404.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

This guide attempts to explain how to install SeAT onto an Ubuntu 14.0.4.x Server. A small amount of Linux experience is preferred when it comes to this guide, all though it is not entirely mandatory. This guide assumes you want all of the available SeAT components installed (which is the default).

getting started

We are going to assume you have root access to a fresh Ubuntu 14.04.x Server. Typically access is gained via SSH. All of the below commands are to be entered in the SSH terminal session for the installation & configuration of SeAT. If the server you want to install SeAT on is being used for other things too (such as hosting MySQL databases and or websites), then please keep that in mind while following this guide.

Packages are installed using the aptitude package manager as the root user.

table of contents

		Database

		PHP & Apache

		Redis

		Composer and Git

		SeAT - Download

		SeAT - Permissions

		SeAT - Setup

		Supervisor

		Crontab

		Webserver - Apachei. Virtual Host Setup

database

SeAT relies heavily on a database to function. Everything it learns is stored here, along with things such as user accounts for your users etc. It comes without saying that database security is a very important aspect too. So, ensure that you choose very strong passwords for your installation where required.

Lets install the database server first:

apt-get install mysql-server expect -y

You should see output similar to the following:

Next, we are going to secure the database server by removing anonymous access and setting a root password.

NOTE The database root password should not be confused with the operating systems root passwords. They are both completely different. They should also not be the same password.

To secure the database, run:

mysql_secure_installation

This will ask you a series of questions, below is how these should be answered:

[...]

Enter current password for root (enter for none): BY DEFAULT IT IS NONE, PRESS ENTER
OK, successfully used password, moving on...

[...]

Set root password? [Y/n] y
New password: SET A STRONG PASSWORD HERE
Re-enter new password: SET A STRONG PASSWORD HERE
Password updated successfully!
Reloading privilege tables..
 ... Success!

[...]

Remove anonymous users? [Y/n] y
 ... Success!

[...]

Disallow root login remotely? [Y/n] y
 ... Success!

[...]

Remove test database and access to it? [Y/n] y

[...]

Reload privilege tables now? [Y/n] y
 ... Success!

[...]

That concludes the installation of the database server and securing it. Next, we need to create an actual database for SeAT to use on the server. For that we need to use the MySQL command line client and enter a few commands to create the database and the user that will be accessing it. Let get to it.

Fire up the MySQL client by running:

mysql -uroot -p

This will prompt you for a password. Use the password you configured for the root account when we ran mysql_secure_installation. This will most probably be the last time you need to use this password :) If the password was correct, you should see a prompt similar to the one below:

[...]
mysql>

Lets run the command to create the SeAT database:

create database seat;

The output should be similar to the below:

mysql> create database seat;
Query OK, 1 row affected (0.00 sec)

Next, we create the user that SeAT itself will use to connect and use the seat database:

GRANT ALL ON seat.* to seat@localhost IDENTIFIED BY 's_p3rs3c3r3tp455w0rd';

Of course, you need to replace s_p3rs3c3r3tp455w0rd with your own. Successfully running this should present you with output similar to the below:

mysql> GRANT ALL ON seat.* to seat@localhost IDENTIFIED BY 's_p3rs3c3r3tp455w0rd';
Query OK, 0 rows affected (0.00 sec)

In the example above, we have effectively declared that SeAT will be using the database as seat:s_p3rs3c3r3tp455w0rd@localhost/seat.

NOTE Remember the password for the seat database user as we will need it later to configure SeAT.

php & apache

SeAT is written in PHP, and therefore we need to install the PHP interpreter. We also need to install a web server that will allow us to server the web front end that comes with SeAT.

Ubuntu 14.04.x ships with PHP 5.5.9-1ubuntu4.14 which has a known bug with late static binding. For this reason, we include a ppa that will allow us to get PHP 5.6 installed, and therefore rid of the bug. Do this with:

add-apt-repository ppa:ondrej/php5-5.6 -y
apt-get update

Next, install the required packages with:

apt-get install apache2 php5 php5-cli php5-mcrypt php5-intl php5-mysql php5-curl php5-gd -y

Successful installation should end with something like the below:

redis

SeAT makes use of Redis [http://redis.io/] as a cache and message broker for the Queue backend. Installing it is really easy. Do it with:

apt-get install redis-server -y

composer and git

SeAT makes use of the de-facto PHP dependency manager called Composer [https://getcomposer.org/]. Composer is required to both install and update SeAT at a later stage. It is for this reason that it is recommended that you install composer globally on your server so that you can access it by simply typing composer. Lets set that up by downloading Composer and saving it to /usr/local/bin:

curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/bin --filename=composer && hash -r

Successful installation should output something like:

[root@seat ~]# curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/bin --filename=composer && hash -r
#!/usr/bin/env php
All settings correct for using Composer
Downloading...

Composer successfully installed to: /usr/local/bin/composer
Use it: php /usr/local/bin/composer

As all of the source code is hosted on Github which is a Git based source control system, we need to install git itself. Do this with:

apt-get install git -y

seat download

Finally, we get to install SeAT itself. The first thing we need to do is to decide where to save SeAT itself. This directory should have enough space for the cached XML files to live on, as well as a few log files should you need to debug problems. The recommended location is /var/www/seat/. To save SeAT in this directory, first change to it:

cd /var/www

Next, we will download SeAT using composer and save it to the seat directory.NOTE This can take some time, Composer does a ton of magic here :+1: (like recursively resolving all dependencies :O)

composer create-project eveseat/seat seat --keep-vcs --prefer-source --no-dev

Successful installation should end with something like:

> php artisan key:generate
Application key [mkzxy4ubHOPVQ05LwyFK2ii0vPxvVMMj] set successfully.

seat permissions

SeAT writes logfiles/cachefiles and other temporary data to the seat/storage/ directory. That together with the fact that the web content will be hosted by apache means that we need to configure the files permissions to allow SeAT do do its thing.

First, lets ensure that www-data owns everything in /var/www/seat which is the folder we just downloaded SeAT to:

chown -R www-data:www-data /var/www/seat

Next, we will allow Apache to write to the seat/storage/ directory so that it may manipulate the files in there as needed:

chmod -R guo+w /var/www/seat/storage/

SeAT is now downloaded and almost ready for use!

seat setup

NOTE The installer will automate this jazz, so just the commands for now.

Edit /var/www/seat/.env
DB_HOST=localhost
DB_DATABASE=seat
DB_USERNAME=seat
DB_PASSWORD=s_p3rs3c3r3tp455w0rd

CACHE_DRIVER=redis
SESSION_DRIVER=file
QUEUE_DRIVER=redis

php artisan vendor:publish --force

php artisan migrate

php artisan db:seed --class=Seat\\Services\\database\\seeds\\NotificationTypesSeeder
php artisan db:seed --class=Seat\\Services\\database\\seeds\\ScheduleSeeder

php artisan eve:update-sde -n

php artisan seat:admin:reset

supervisor

SeAT makes use of workers to actually process the update jobs that get scheduled. Think if the architecture as someone coming and dumping mail at the postoffice, and its up to say 4 workers to dig through the mail and sort it. Those 4 workers need a manager to ensure that they keep working. supervisord is a excellent candidate for the manager job.

Lets install supervisor:

apt-get install supervisor -y

We now have to configure the actual workers that supervisord will manage. We do this by adding a new configuration file to /etc/supervisor/conf.d/ called seat.conf (Note that the number of workers that we want to start is set by the numprocs setting):

[program:seat]
command=/usr/bin/php /var/www/seat/artisan queue:listen --queue=high,medium,low,default --tries 1 --timeout=3600
process_name = %(program_name)s-80%(process_num)02d
stdout_logfile = /var/log/seat-80%(process_num)02d.log
stdout_logfile_maxbytes=100MB
stdout_logfile_backups=10
numprocs=4
directory=/var/www/seat
stopwaitsecs=600
user=www-data

Save your file and reload supervisord so that it is aware of the changes that we have made:

supervisorctl reload

Lastly, check that everything is OK and the workers have started up:

[root@seat seat]# supervisorctl status
seat1 RUNNING pid 2677, uptime 0:01:13

If you do not have output such as in the above block, check the log files for any possible errors.

crontab

So far, we have SeAT workers running meaning that it is ready to process jobs that enter the Queue. We now need a way to add jobs to that Queue for processing by the workers.SeAT has a build in schedule for when what should run at which interval. With the cronjob, we are simply telling SeAT to check every minute “is there anything we should be doing?”. We will add the cronjob as the www-data user as this is the user that has had all its permissions configured earlier.

Open up the crontab for www-data with:

crontab -u www-data -e

Next, paste the following line at the bottom of the file (remember to check the path if you chose one other that the one in this guide):

* * * * * /usr/bin/php /var/www/seat/artisan schedule:run 1>> /dev/null 2>&1

webserver - apache

In order to get the SeAT fronted running, we need to configure Apache to serve our SeAT installs public/ folder. This is the only folder that should be internet facing. That small index.php is the gateway into the application.
The Apache configuration itself will depend on how your server is set up. Generally, virtual hosting is the way to go, and this is what I will be showing here.

virtual host setup

Getting the virtual host setup is as simple as creating a new configuration file (I usually call it the sites-domain.conf), and modifying it to match your setup. Everywhere you see seat.local as the hostname in the below examples it needs to be substituted to your actual domain.

Next, we have to configure Apache itself to know about the directories and stuff SeAT needs. We need to create that sites-domain.conf file I mentioned. This file should live in /etc/apache2/sites-available/, so lets change directories there:

/etc/apache2/sites-available/

Now, create the conf file. In my case, the domain is seat.local, so I will call it seat.local.conf. Add the following contents to that file:

<VirtualHost *:80>
 ServerAdmin webmaster@seat.local
 DocumentRoot "/var/www/seat/public"
 ServerName seat.local
 ServerAlias www.seat.local
 ErrorLog /var/log/apache2/seat.local-error.log
 CustomLog /var/log/apache2/seat.local-access.log combined
 <Directory "/var/www/seat/public">
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

Now, we need to enable our virtual host with this command

sudo a2ensite seat.local

Considering we need to use mod_rewrite to get our URL’s to display correctly, we can quickly enable that by running the below:

a2enmod rewrite

Finally, restart apache.

apachectl restart

That should be it from a configuration perspective. We can confirm that everything is configured correctly by running:

[root@seat conf.d]# apachectl -t -D DUMP_VHOSTS
httpd: Could not reliably determine the server's fully qualified domain name, using seat.localdomain for ServerName
VirtualHost configuration:
wildcard NameVirtualHosts and _default_ servers:
*:80 seat.local (/etc/httpd/conf.d/seat.local.conf:1)
Syntax OK

Thats it! SeAT should now be available at http://your-domain-or-ip/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

development/general.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

So, you have a bug / feature / curiosity to test out. Hopefully this article will help you quickly get set up to do that!

SeAT packages are developed as a standalone packages. The general idea being that you should be including them in the main seat projects composer.json like here [https://github.com/eveseat/seat/blob/master/composer.json#L11]. This of course will install all of the sources in the projects vendor/ directory, though this is not always ideal from a development perspective.

Instead, you can decide to follow the next few stops to create a loadable package directory, that you can commit to your fork. Below is generally how I have developed the packages.

		From the main seat [https://github.com/eveseat/seat] project, create a sub folder called packages. For clarities sake, this folder will be at the same level as say the app folder as well as the composer.json file.

		Next, I like to create the vendors directory for the package I am going to work on, so, create a folder in under packages and call it eveseat. (This is optional. If you skip it, make sure you keep that in mind when setting up the autoloader later).

		Clone your fork under the eveseat folder.

		Next, we move back to the original composer.json file, and add the following for PSR-4 class mapping (for the eveapi package):

"psr-4": {
 "App\\": "app/",
 "Seat\\Eveapi\\": "packages/eveseat/eveapi/src/"
}

		Set up the autoloader by running composer dump-autoload

		You should now have the Seat\Eveapi namespace autoloaded and ready for your testing :D

Take special not of any dependencies that may be missing. You can resolve them by adding them to your composer.json and running composer update.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

development/package_development.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

introduction

So, you want to write a SeAT package? Hopefully this guide helps you along the way!This guide was written while writing the API package for SeAT here [https://github.com/eveseat/api]. I figured it would be best to try and capture the process as I am going through it to help in case I miss any important details.

toc

		Getting Started

		Service Provider

		Package Structure

		Routes and Controllers

		Routes - Access Control

		Middleware

		Views

		Views - Sidebar Menu

		Views - Character Menu

		Views - Corporation Menu

		Views - Bootstrapping Menu Items

		Database

background notes

I think its important to keep in mind a few things about how SeAT is put together. The most important being a brief description of what each core package offers, and how you can integrate with them. For a breakdown on what the core packages provide, please refer the to breakdown here.

SeAT 1.x is written on Laravel 5.1 LTS [http://laravel.com/docs/5.1]. A very good thing to do would be to actually read the documentation top->bottom and get an idea of what is possible with the framework. SeAT core packages make heavy use of many of the features, based directly of what has been interpreted by this very documentation.

If you really want to start contributing packages, but juts cant get your head around this whole Laravel thing, then I can suggest you have a look at this excellent free course material covering the basics of what you will encounter in the SeAT codebase. https://laracasts.com/series/laravel-5-fundamentals

getting started

The very first thing to do is prepare the empty git repository on say Github, as well as the composer package itself. Clone a clean repo, and run composer init, answering any questions. Once that is done, edit the resultant composer.json and prepare the autoload block. SeAT core follows the PSR-4 [http://www.php-fig.org/psr/psr-4/] autoloading standard. I will suggest you do the same. For some more detailed composer info, refer to the docs here [https://getcomposer.org/doc/01-basic-usage.md]. For the API package, I am going to autoload Seat\Api from the src directory using PSR-4.

service provider

As mentioned in the package breakdowns here, the eveseat/seat repository bootstraps the packages via service providers. This is actually a Laravel convention that SeAT just follows. To get our package ready, we need to create a service provider. Thankfully there is a command to stub a new one for us. For the API package, I just ran php artisan make:provider ApiServiceProvider and copied the resultant file from app/Providers to my packages src/ directory. Our packages file structure now looks as follows:

├── composer.json
└── src
 └── ApiServiceProvider.php

package structure

From here you pretty much free to do what you want. How you structure the package will obviously depend on what exactly your package provides. In principle, I prefer to follow the same package structure as Laravel does for web / console features. Since we are going to be providing web features with the API, we will quickly create a few folders in preparation for this. I know beforehand that we are going to need a model to store API tokens; middleware to authenticate API requests; routes and controllers for the actual api logic (preferably making use of the eveapi/services repository classes for data access) as well as a few web views for administrators to generate API tokens for applications. With that in mind, the initial structure looks as follows:

├── composer.json
└── src
 ├── ApiServiceProvider.php
 ├── Config
 ├── Http
 │ ├── Controllers
 │ └── Middleware
 ├── Models
 ├── database
 │ └── migrations
 └── resources
 └── views

This will obviously change as we progress making the package.

routes and controllers

To start testing the API, we need to add a route and controller to process some requests and responses. My routes.php will have a global Route::group() to encapsulate the routes in the Seat\Api namespace as well as prefix them with api/.

// File: routes.php
Route::group([
 'namespace' => 'Seat\Api\Http\Controllers',
 'prefix' => 'api'
], function () {

 // Logic here
});

See the final product here [https://github.com/eveseat/api/blob/master/src/Http/routes.php] for a more complete example.

Next, I add some logic with a route to /, update the base frameworks composer.json to autoload the Seat\Api namespace from the directory where my package lives, run composer dump-autoload and add the service provider to the eveseat/seat repositories app.php providers array. Lastly, I add a method to the service provider to load the routes and call it form the boot() method in the generated stub.

See the complete service provider here [https://github.com/eveseat/api/blob/master/src/ApiServiceProvider.php]

/**
* Include the routes
*/
public function add_routes()
{

 if (!$this->app->routesAreCached()) {
 include __DIR__ . '/Http/routes.php';
 }
}

As a final test, I check that my route is accessible from a booted SeAT app. :)

routes - access control

Obviously, some routes are not for everyones eyes. SeAT comes with middleware that can be used to filter out requests that may not be authorized for your route. As can be seen in the example below (from here [https://github.com/eveseat/api/blob/master/src/Http/routes.php#L28]), we are filtering out requests to api-admin for only superusers.

Route::group([
 'namespace' => 'Admin',
 'middleware' => 'bouncer:superuser', // The ACL specification.
 'prefix' => 'api-admin'
], function () {
 Route::get('/', [
 'as' => 'api-admin.list',
 'uses' => 'ApiAdminController@listTokens']);
 });

I suggest you have a look at the eveseat/web packages routes definitions for more examples on how the middlewares are used. https://github.com/eveseat/web/tree/master/src/Http/Routes

middleware

To auth our API requests, we are going to go with token based authentication for now. We want users to present us with a X-Token header (from a valid allowed src IP address) before they may proceed with their request. To do this, we will filter requests using middleware. Thankfully, again, Laravel comes with a command to stub us some empty middleware. Run php artisan make:middleware ApiToken and copy it to your projects Middleware folder. Next we should register the middleware in our service provider. I do this by adding a method and calling it in boot().

See the complete middleware here [https://github.com/eveseat/api/blob/master/src/Http/Middleware/ApiToken.php]

/**
 * Include the middleware needed
 *
 * @param $router
 */
public function add_middleware($router)
{

 // Authenticate checks that the token is valid
 // from an allowed IP address
 $router->middleware('api.auth', ApiToken::class);

}

views

Although almost all of our interfacing with this package will be via the json api endpoints, we need to add a few routes that will give an administrator the ability to generate API tokens, as well as view logs etc. As mentioned, this will be for an administrator, so we will re-use the ACL features provided by the eveseat/web package to ensure that only admins an access our api-admin routes.Views live in resources/views and are bootstrapped to the api namespace in the service provider. See the service provider here [https://github.com/eveseat/api/blob/master/src/ApiServiceProvider.php] for an example.

Note how we are re-using views that exist in the web namespace. All we have to do is extend one of the grids [https://github.com/eveseat/web/tree/master/src/resources/views/layouts/grids] like here [https://github.com/eveseat/api/blob/master/src/resources/views/list.blade.php#L1] and start without our blade template.

views - sidebar menu

Integrating with the sidebar is also really easy. All you have to do is create a config file, bootstrap it in the service provider and viola. The config file itself has a set structure for the web package to interpret and can be seen here [https://github.com/eveseat/api/blob/master/src/Config/package.sidebar.php].

return [
 'api' => [
 'permission' => 'Superuser',
 'name' => 'Api Tokens',
 'icon' => 'fa-exchange',
 'route_segment' => 'api-admin',
 'entries' => [
 [// Manage API Tokens
 'name' => 'Manage',
 'icon' => 'fa-key',
 'route' => 'api-admin.list'
]
]
]
];

The format is generally an array, whereby the first key is the name of your package (api in this case). Thereafter you can specify the main entry, and any sub entries you want to add. The route key should refer to the named route. The sidebar loader will resolve the route itself for you. If you have any permissions requirements for your package, the permission key can be used together with a required SeAT permission to render the view.

views - character submenus

Integrating with the character sub menus is also really easy. Just like the sidebar, all you have to do is create a config file, bootstrap it in the service provider and viola. The namespace should be named package.character.menu in your service provider. A sample config file can be seen below:

// file: package.character.menu.php

return [
 [
 'name' => 'Research',
 'permission' => 'character.research',
 'highlight_view' => 'research',
 'route' => 'character.view.research'
]
];

views - corporation submenus

Integrating with the corporation sub menus is also really easy. Just like the sidebar and character menus, all you have to do is create a config file, bootstrap it in the service provider and viola. The namespace should be named package.corporation.menu in your service provider. A sample config file can be seen below:

// file: package.corporation.menu.php

return [
 [
 'name' => 'Research',
 'permission' => 'corporation.research',
 'highlight_view' => 'research',
 'route' => 'corporation.view.research'
]
];

views - bootstrapping menu items

In the above items, we refer to the files needing to be bootstrapped via the service provider. All this really means is that we have to tell the Laravel application where to find configuration information for a namespace. So, if we wanted to add a sidebar item, we would add the following line to the register() method of the service provider:

// Include this packages menu items
$this->mergeConfigFrom(__DIR__ . '/Config/package.sidebar.php', 'package.sidebar');

The first argument is the file with the sidebar definitions, the second is the namespace.

database

For our API package, we have a database requirement. We need to store api tokens and the ip address that is allowed to use them. We are also going to store an access log (based on the config setting). We create migrations and models just like you would for a base Laravel 5.1 application. The only thing to remember is that your migrations for your package must be published (and specified in your service provider).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

setup_guides/centos7.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

This guide attempts to explain how to install SeAT onto a CentOS 7.x Server. A small amount of Linux experience is preferred when it comes to this guide, all though it is not entirely mandatory. This guide assumes you want all of the available SeAT components installed (which is the default).

getting started

We are going to assume you have root access to a fresh CentOS 7.x Server. Typically access is gained via SSH. All of the below commands are to be entered in the SSH terminal session for the installation & configuration of SeAT. If the server you want to install SeAT on is being used for other things too (such as hosting MariaDB databases and or websites), then please keep that in mind while following this guide.

Packages are installed using the yum package manager as the root user.

table of contents

		Repositoriesi. Epelii. Remi

		Database

		PHP & Apache

		Redis

		Composer and Git

		SeAT - Download

		SeAT - Permissions

		SELinux

		SeAT - Setup

		Supervisor

		Crontab

		Webserver - Apachei. Virtual Host Setup

repositories

Due to the nature of CentOS 7.x packaging and the limitations in getting ‘bleeding edge’ software with it, we need to add some extra software repositories in order to get SeAT running. These repositories are known as the Fedora EPEL [https://fedoraproject.org/wiki/EPEL] and Remi [http://rpms.famillecollet.com/] repositories. Adding these repositories will allow us to get access to PHP 5.5+ which is a requirement for SeAT.

To install / configure the required repositories, run the following commands:

epel

EPEL=epel-release-latest-7.noarch.rpm && curl -O https://dl.fedoraproject.org/pub/epel/$EPEL && yum localinstall -y $EPEL && rm -f $EPEL

remi

REMI=remi-release-7.rpm && curl -O http://rpms.remirepo.net/enterprise/$REMI && yum localinstall -y $REMI && rm -f $REMI

Next, we will quickly install yum-utils and enable the remi-php55 repository in order to gain access to PHP 5.5 (You can skip this if you want to manually enable remi and remi-php55). Do this with:

yum install yum-utils -y

yum-config-manager --enable remi,remi-php55

database

SeAT relies heavily on a database to function. Everything it learns is stored here, along with things such as user accounts for your users etc. It comes without saying that database security is a very important aspect too. So, ensure that you choose very strong passwords for your installation where required.

Lets install the database server first:

yum install -y mariadb-server

You should see output similar to the following:

[... snip ...]
Installed:
 mariadb-server.x86_64 1:5.5.44-1.el7_1
[... snip ...]

With the database server installed, lets start it and configure it to automatically start up the next time out server boots up:

systemctl enable mariadb.service

Next, start the DB server with

systemctl start mariadb.service

Next, we are going to secure the database server by removing anonymous access and setting a root password.

NOTE The database root password should not be confused with the operating systems root passwords. They are both completely different. They should also not be the same password.

To secure the database, run:

mysql_secure_installation

This will ask you a series of questions, below is how these should be answered:

[...]

Enter current password for root (enter for none): BY DEFAULT IT IS NONE, PRESS ENTER
OK, successfully used password, moving on...

[...]

Set root password? [Y/n] y
New password: SET A STRONG PASSWORD HERE
Re-enter new password: SET A STRONG PASSWORD HERE
Password updated successfully!
Reloading privilege tables..
 ... Success!

[...]

Remove anonymous users? [Y/n] y
 ... Success!

[...]

Disallow root login remotely? [Y/n] y
 ... Success!

[...]

Remove test database and access to it? [Y/n] y

[...]

Reload privilege tables now? [Y/n] y
 ... Success!

[...]

That concludes the installation of the database server and securing it. Next, we need to create an actual database for SeAT to use on the server. For that we need to use the MySQL command line client and enter a few commands to create the database and the user that will be accessing it. Let get to it.

Fire up the MySQL client by running:

mysql -uroot -p

This will prompt you for a password. Use the password you configured for the root account when we ran mysql_secure_installation. This will most probably be the last time you need to use this password :) If the password was correct, you should see a prompt similar to the one below:

[...]
MariaDB [(none)]>

Lets run the command to create the SeAT database:

create database seat;

The output should be similar to the below:

MariaDB [(none)]> create database seat;
Query OK, 1 row affected (0.00 sec)

Next, we create the user that SeAT itself will use to connect and use the seat database:

GRANT ALL ON seat.* to seat@localhost IDENTIFIED BY 's_p3rs3c3r3tp455w0rd';

Of course, you need to replace s_p3rs3c3r3tp455w0rd with your own. Successfully running this should present you with output similar to the below:

MariaDB [(none)]> GRANT ALL ON seat.* to seat@localhost IDENTIFIED BY 's_p3rs3c3r3tp455w0rd';
Query OK, 0 rows affected (0.00 sec)

In the example above, we have effectively declared that SeAT will be using the database as seat:s_p3rs3c3r3tp455w0rd@localhost/seat.

NOTE Remember the password for the seat database user as we will need it later to configure SeAT.

php & apache

SeAT is written in PHP, and therefore we need to install the PHP interpreter. We also need to install a web server that will allow us to server the web front end that comes with SeAT.

So, install the required packages with:

yum install -y httpd php php-mysql php-cli php-mcrypt php-process php-mbstring php-intl php-dom php-gd

You may be asked if you want to accept some GPG keys for package verification here. Just say [Y]. Successful installation should end with something like the below:

[... snip ...]

Installed:
 httpd.x86_64 0:2.4.6-31.el7.centos.1 php.x86_64 0:5.5.30-1.el7.remi
 php-cli.x86_64 0:5.5.30-1.el7.remi php-intl.x86_64 0:5.5.30-1.el7.remi
 php-mbstring.x86_64 0:5.5.30-1.el7.remi php-mcrypt.x86_64 0:5.5.30-1.el7.remi
 php-mysqlnd.x86_64 0:5.5.30-1.el7.remi php-process.x86_64 0:5.5.30-1.el7.remi
 php-xml.x86_64 0:5.5.30-1.el7.remi

Now, we can start apache and configure it automatically start the next time the server boots up:

systemctl enable httpd.service

Next, we start Apache

systemctl start httpd.service

redis

SeAT makes use of Redis [http://redis.io/] as a cache and message broker for the Queue backend. Installing it is really easy. Do it with:

yum install -y redis

Next, start it and configure it to autostart next time the server boots up:

systemctl enable redis.service

systemctl start redis.service

composer and git

SeAT makes use of the de-facto PHP dependency manager called Composer [https://getcomposer.org/]. Composer is required to both install and update SeAT at a later stage. It is for this reason that it is recommended that you install composer globally on your server so that you can access it by simply typing composer. Lets set that up by downloading Composer and saving it to /usr/local/bin:

curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/bin --filename=composer && hash -r

Successful installation should output something like:

[root@seat ~]# curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/bin --filename=composer && hash -r
#!/usr/bin/env php
All settings correct for using Composer
Downloading...

Composer successfully installed to: /usr/local/bin/composer
Use it: php /usr/local/bin/composer

As all of the source code is hosted on Github which is a Git based source control system, we need to install git itself. Do this with:

yum install -y git

seat download

Finally, we get to install SeAT itself. The first thing we need to do is to decide where to save SeAT itself. This directory should have enough space for the cached XML files to live on, as well as a few log files should you need to debug problems. The recommended location is /var/www/seat/. To save SeAT in this directory, first change to it:

cd /var/www

Next, we will download SeAT using composer and save it to the seat directory.NOTE This can take some time, Composer does a ton of magic here :+1: (like recursively resolving all dependencies :O)

composer create-project eveseat/seat seat --keep-vcs --prefer-source --no-dev

Successful installation should end with something like:

> php artisan key:generate
Application key [s8YzfjB3bBowhZERDl9LxdG7DrgIbrZE] set successfully.

seat permissions

SeAT writes logfiles/cachefiles and other temporary data to the seat/storage/ directory. That together with the fact that the web content will be hosted by apache means that we need to configure the files permissions to allow SeAT do do its thing.

First, lets ensure that apache owns everything in /var/www/seat which is the folder we just downloaded SeAT to:

chown -R apache:apache /var/www/seat

Next, we will allow Apache to write to the seat/storage/ directory so that it may manipulate the files in there as needed:

chmod -R guo+w /var/www/seat/storage/

SeAT is now downloaded and almost ready for use!

selinux

Many people hate SELinux, primarily due to a misunderstanding of what it does and how it works. SeAT can run perfectly fine with SELinux enabled, and I actually encourage you to leave it enabled. There is however one small settings change required to make everything work as expected.

First, we have to allow apache to make network connections. This is so that we may connect to the EVEAPI, as well as the MySQL database and Redis. We also have to allow Apache to write to disk. So, configure this with:

setsebool -P httpd_can_network_connect 1
setsebool -P httpd_unified 1

Next, we have to ensure that the files and folders in /var/www/seat is correctly labelled in order to prevent SELinux from blocking perfectly normal behaviour. Check this with:

restorecon -Rv /var/www/seat

Thats it. Pretty painless eh? :)

seat setup

NOTE The installer will automate this jazz, so just the commands for now.

Edit /var/www/seat/.env
DB_HOST=localhost
DB_DATABASE=seat
DB_USERNAME=seat
DB_PASSWORD=s_p3rs3c3r3tp455w0rd

CACHE_DRIVER=redis
SESSION_DRIVER=file
QUEUE_DRIVER=redis

php artisan vendor:publish --force

php artisan migrate

php artisan db:seed --class=Seat\\Services\\database\\seeds\\NotificationTypesSeeder
php artisan db:seed --class=Seat\\Services\\database\\seeds\\ScheduleSeeder

php artisan eve:update-sde -n

php artisan seat:admin:reset

supervisor

SeAT makes use of workers to actually process the update jobs that get scheduled. Think if the architecture as someone coming and dumping mail at the postoffice, and its up to say 4 workers to dig through the mail and sort it. Those 4 workers need a manager to ensure that they keep working. supervisord is a excellent candidate for the manager job.

Lets install supervisor, start it and configure it to start automatically the next time the server boots:

yum install supervisor -y

systemctl enable supervisord.service

We now have to configure the actual workers that supervisord will manage. We do this by adding a new configuration file to /etc/supervisord.d/ called seat.ini Note that the number of workers that we want to start is set by the numprocs settings:

[program:seat]
command=/usr/bin/php /var/www/seat/artisan queue:listen --queue=high,medium,low,default --tries 1 --timeout=3600
process_name = %(program_name)s-80%(process_num)02d
stdout_logfile = /var/log/seat-80%(process_num)02d.log
stdout_logfile_maxbytes=100MB
stdout_logfile_backups=10
numprocs=4
directory=/var/www/seat
stopwaitsecs=600
user=apache

Save your file and start supervisord so that it is aware of the changes that we have made:

systemctl start supervisord.service

Lastly, check that everything is OK and the workers have started up:

[root@seat seat]# supervisorctl status
seat:seat-8000 RUNNING pid 5083, uptime 0:00:28
seat:seat-8001 RUNNING pid 5082, uptime 0:00:28
seat:seat-8002 RUNNING pid 5085, uptime 0:00:28
seat:seat-8003 RUNNING pid 5084, uptime 0:00:28

If you do not have output such as in the above block, check the log files for any possible errors.

crontab

So far, we have SeAT workers running meaning that it is ready to process jobs that enter the Queue. We now need a way to add jobs to that Queue for processing by the workers.SeAT has a build in schedule for when what should run at which interval. With the cronjob, we are simply telling SeAT to check every minute “is there anything we should be doing?”. We will add the cronjob as the apache user as this is the user that has had all its permissions configured earlier.

Open up the crontab for apache with:

crontab -u apache -e

Next, paste the following line at the bottom of the file (remember to check the path if you chose one other that the one in this guide):

* * * * * /usr/bin/php /var/www/seat/artisan schedule:run 1>> /dev/null 2>&1

webserver - apache

In order to get the SeAT fronted running, we need to configure Apache to serve our SeAT installs public/ folder. This is the only folder that should be internet facing. That small index.php is the gateway into the application.
The Apache configuration itself will depend on how your server is set up. Generally, virtual hosting is the way to go, and this is what I will be showing here.

If you are not going to use virtual hosting, the easiest to get going will probably to symlink /var/www/seat/public/ to /var/www/html/seat and configuring apache to AllowOverride All in the <Directory "/var/www/html"> section. This should have SeAT available at http://your-host-name-or-ip/seat after you restart apache.

virtual host setup

Getting the virtual host setup is as simple as creating a new configuration file (I usually call it the sites-domain.conf), and modifying it to match your setup. Everywhere you see seat.local as the hostname in the below examples it needs to be substituted to your actual domain.

We symlink the SeAT public directory with:

ln -s /var/www/seat/public /var/www/html/seat.local

Next, we have to configure Apache itself to know about the directories and stuff SeAT needs. We need to create that sites-domain.conf file I mentioned. This file should live in /etc/httpd/conf.d, so lets change directories there:

cd /etc/httpd/conf.d

Now, create the conf file. In my case, the domain is seat.local, so I will call it seat.local.conf. Add the following contents to that file:

<VirtualHost *:80>
 ServerAdmin webmaster@your.domain
 DocumentRoot "/var/www/html/seat.local"
 ServerName seat.local
 ServerAlias www.seat.local
 ErrorLog "logs/seat.local-error_log"
 CustomLog "logs/seat.local-access_log" common
 <Directory "/var/www/html/seat.local">
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

With our config file created, we need to restart apache to read the new file:

apachectl restart

That should be it from a configuration perspective. We can confirm that everything is configured correctly by running:

Thats it! SeAT should now be available at http://your-domain-or-ip/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

changelogs/console.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

console change logs

Generated with: git log --oneline --decorate

1.0.10

8fb5ad1 (tag: 1.0.10) Version Bump
3e1dca5 Update copyright
d4b2b6f Code style fix

1.0.9

68e5638 (tag: 1.0.9) Version Bump
8b3aef9 Use `class` notation

1.0.8

6a6d779 (tag: 1.0.8) Version Bump
643479f Update diagnose with some more useful debug info
0132b4e Add Github version lookup

1.0.7

18bf548 (tag: 1.0.7) Version Bump
8934a36 Specify versions with ~

1.0.6

3f541b4 (tag: 1.0.6) Version Bump
a49d908 Revert b7cac27ebe4a1de8

1.0.5

7e1d13d (tag: 1.0.5) Version Bump
b7cac27 Drop guzzle version to match that of phealng
91f2e03 Cleanups
6361651 Add diagnose command
123bc36 Update README.md

1.0.4

338a397 (tag: 1.0.4) Cleanup outputs and sink to a filehandler instead.

1.0.3

0f83a18 (tag: 1.0.3) Version Bump
d0f6d31 Display versions in a table
3d472d4 Add notifications version

1.0.2

65f650d (tag: 1.0.2) Versino Bump

1.0.1

2a2a350 (tag: 1.0.1) Add web and api versions

1.0.0

8cc907d (tag: 1.0.0) Update required eveseat package versions
81fde9f Version Bump

1.0-pre-alpha

fe0da9e (tag: 1.0-pre-alpha) Update README
05e59b3 Add a cache clearing command
41081d9 Add the UpdateSDE command
9af76fb use ::class format
7e0bae5 Add seat:admin:reset command
9f4e15f Update to match eveseat/eveapi model refacto
ee48a61 Add services version lookup
5d7ca5f Add a 'live' status command
bcd1feb Add command to update a single key
ee43dc5 Add seat:keys:show command
f72ba13 Style fix
b4bcc04 Add the console.config and update version command
8fe529d Refactor updater commands to the Eve\ namespace
cc92c10 Ensure only enabled keys are queued for updates
8f93faf Update to new eveapi version information location
fa5513d Queue Jobs using the UpdatePublic Job
887b89c Update readme with badges
74f82f5 Prepare for packagist publish.
a782121 Add the command to queue updates for API keys
14edaa8 Make all commands honor the Job Container
12538ef Add command for the Api CallList update
31e0d06 Add EVE Map Update command
20aa008 Add eve:update-eve command
b9b7545 Add the EveUpdateServerStatus command
c978b94 Add the add:job command for testing
c01ddd9 Start the Console package
f42ac27 first commit

 © Copyright 2016.
 Created using Sphinx 1.3.5.

setup_guides/centos6.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

This guide attempts to explain how to install SeAT onto a CentOS 6.x Server. A small amount of Linux experience is preferred when it comes to this guide, all though it is not entirely mandatory. This guide assumes you want all of the available SeAT components installed (which is the default).

getting started

We are going to assume you have root access to a fresh CentOS 6.x Server. Typically access is gained via SSH. All of the below commands are to be entered in the SSH terminal session for the installation & configuration of SeAT. If the server you want to install SeAT on is being used for other things too (such as hosting MySQL databases and or websites), then please keep that in mind while following this guide.

Packages are installed using the yum package manager as the root user.

table of contents

		Repositoriesi. Epelii. Remi

		Database

		PHP & Apache

		Redis

		Composer and Git

		SeAT - Download

		SeAT - Permissions

		SELinux

		SeAT - Setup

		Supervisor

		Crontab

		Webserver - Apachei. Virtual Host Setup

repositories

Due to the nature of CentOS 6.x packaging and the limitations in getting ‘bleeding edge’ software with it, we need to add some extra software repositories in order to get SeAT running. These repositories are known as the Fedora EPEL [https://fedoraproject.org/wiki/EPEL] and Remi [http://rpms.famillecollet.com/] repositories. Adding these repositories will allow us to get access to PHP 5.5+ which is a requirement for SeAT.

To install / configure the required repositories, run the following commands:

epel

EPEL=epel-release-latest-6.noarch.rpm && curl -O https://dl.fedoraproject.org/pub/epel/$EPEL && yum localinstall -y $EPEL && rm -f $EPEL

remi

REMI=remi-release-6.rpm && curl -O http://rpms.remirepo.net/enterprise/$REMI && yum localinstall -y $REMI && rm -f $REMI

Next, we will quickly install yum-utils and enable the remi-php55 repository in order to gain access to PHP 5.5 (You can skip this if you want to manually enable remi and remi-php55). Do this with:

yum install yum-utils -y

yum-config-manager --enable remi,remi-php55

database

SeAT relies heavily on a database to function. Everything it learns is stored here, along with things such as user accounts for your users etc. It comes without saying that database security is a very important aspect too. So, ensure that you choose very strong passwords for your installation where required.

Lets install the database server first:

yum install mysql mysql-server -y

You should see output similar to the following:

[root@seat ~]# yum install mysql mysql-server -y
Loaded plugins: fastestmirror
Setting up Install Process
Loading mirror speeds from cached hostfile
 * base: mirror.nonstop.co.il

[...]

Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.73-5.el6_6 will be installed
--> Processing Dependency: mysql-libs = 5.1.73-5.el6_6 for package: mysql-5.1.73-5.el6_6.x86_64
--> Processing Dependency: perl(Sys::Hostname) for package: mysql-5.1.73-5.el6_6.x86_64
--> Processing Dependency: perl(IPC::Open3) for package: mysql-5.1.73-5.el6_6.x86_64
--> Processing Dependency: perl(Getopt::Long) for package: mysql-5.1.73-5.el6_6.x86_64
--> Processing Dependency: perl(File::Temp) for package: mysql-5.1.73-5.el6_6.x86_64
--> Processing Dependency: perl(Fcntl) for package: mysql-5.1.73-5.el6_6.x86_64

[...]

Dependency Installed:
 perl.x86_64 4:5.10.1-141.el6 perl-DBD-MySQL.x86_64 0:4.013-3.el6 perl-DBI.x86_64 0:1.609-4.el6 perl-Module-Pluggable.x86_64 1:3.90-141.el6
 perl-Pod-Escapes.x86_64 1:1.04-141.el6 perl-Pod-Simple.x86_64 1:3.13-141.el6 perl-libs.x86_64 4:5.10.1-141.el6 perl-version.x86_64 3:0.77-141.el6

Dependency Updated:
 mysql-libs.x86_64 0:5.1.73-5.el6_6

Complete!

With the database server installed, lets start it and configure it to automatically start up the next time out server boots up:

/etc/init.d/mysqld start

chkconfig mysqld on

Next, we are going to secure the database server by removing anonymous access and setting a root password.

NOTE The database root password should not be confused with the operating systems root passwords. They are both completely different. They should also not be the same password.

To secure the database, run:

mysql_secure_installation

This will ask you a series of questions, below is how these should be answered:

[...]

Enter current password for root (enter for none): BY DEFAULT IT IS NONE, PRESS ENTER
OK, successfully used password, moving on...

[...]

Set root password? [Y/n] y
New password: SET A STRONG PASSWORD HERE
Re-enter new password: SET A STRONG PASSWORD HERE
Password updated successfully!
Reloading privilege tables..
 ... Success!

[...]

Remove anonymous users? [Y/n] y
 ... Success!

[...]

Disallow root login remotely? [Y/n] y
 ... Success!

[...]

Remove test database and access to it? [Y/n] y

[...]

Reload privilege tables now? [Y/n] y
 ... Success!

[...]

That concludes the installation of the database server and securing it. Next, we need to create an actual database for SeAT to use on the server. For that we need to use the MySQL command line client and enter a few commands to create the database and the user that will be accessing it. Let get to it.

Fire up the MySQL client by running:

mysql -uroot -p

This will prompt you for a password. Use the password you configured for the root account when we ran mysql_secure_installation. This will most probably be the last time you need to use this password :) If the password was correct, you should see a prompt similar to the one below:

[...]
mysql>

Lets run the command to create the SeAT database:

create database seat;

The output should be similar to the below:

mysql> create database seat;
Query OK, 1 row affected (0.00 sec)

Next, we create the user that SeAT itself will use to connect and use the seat database:

GRANT ALL ON seat.* to seat@localhost IDENTIFIED BY 's_p3rs3c3r3tp455w0rd';

Of course, you need to replace s_p3rs3c3r3tp455w0rd with your own. Successfully running this should present you with output similar to the below:

mysql> GRANT ALL ON seat.* to seat@localhost IDENTIFIED BY 's_p3rs3c3r3tp455w0rd';
Query OK, 0 rows affected (0.00 sec)

In the example above, we have effectively declared that SeAT will be using the database as seat:s_p3rs3c3r3tp455w0rd@localhost/seat.

NOTE Remember the password for the seat database user as we will need it later to configure SeAT.

php & apache

SeAT is written in PHP, and therefore we need to install the PHP interpreter. We also need to install a web server that will allow us to server the web front end that comes with SeAT.

So, install the required packages with:

yum install -y httpd php php-mysql php-cli php-mcrypt php-process php-mbstring php-intl php-dom php-gd

You may be asked if you want to accept some GPG keys for package verification here. Just say [Y]. Successful installation should end with something like the below:

Installed:
 httpd.x86_64 0:2.2.15-47.el6.centos php.x86_64 0:5.5.30-1.el6.remi php-cli.x86_64 0:5.5.30-1.el6.remi php-intl.x86_64 0:5.5.30-1.el6.remi
 php-mbstring.x86_64 0:5.5.30-1.el6.remi php-mcrypt.x86_64 0:5.5.30-1.el6.remi php-mysqlnd.x86_64 0:5.5.30-1.el6.remi php-process.x86_64 0:5.5.30-1.el6.remi

Dependency Installed:
 apr.x86_64 0:1.3.9-5.el6_2 apr-util.x86_64 0:1.3.9-3.el6_0.1 apr-util-ldap.x86_64 0:1.3.9-3.el6_0.1 httpd-tools.x86_64 0:2.2.15-47.el6.centos
 libicu-last.x86_64 0:50.1.2-11.el6.remi libmcrypt.x86_64 0:2.5.8-9.el6 libtool-ltdl.x86_64 0:2.2.6-15.5.el6 libzip-last.x86_64 0:1.0.1-1.el6.remi
 mailcap.noarch 0:2.1.31-2.el6 php-common.x86_64 0:5.5.30-1.el6.remi php-pdo.x86_64 0:5.5.30-1.el6.remi php-pecl-jsonc.x86_64 0:1.3.9-1.el6.remi.5.5
 php-pecl-zip.x86_64 0:1.13.1-1.el6.remi.5.5

Now, we can start apache and configure it automatically start the next time the server boots up:

/etc/init.d/httpd start

chkconfig httpd on

redis

SeAT makes use of Redis [http://redis.io/] as a cache and message broker for the Queue backend. Installing it is really easy. Do it with:

yum install -y redis

Next, start it and configure it to autostart next time the server boots up:

/etc/init.d/redis start

chkconfig redis on

composer and git

SeAT makes use of the de-facto PHP dependency manager called Composer [https://getcomposer.org/]. Composer is required to both install and update SeAT at a later stage. It is for this reason that it is recommended that you install composer globally on your server so that you can access it by simply typing composer. Lets set that up by downloading Composer and saving it to /usr/local/bin:

curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/bin --filename=composer && hash -r

Successful installation should output something like:

[root@seat ~]# curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/bin --filename=composer && hash -r
#!/usr/bin/env php
All settings correct for using Composer
Downloading...

Composer successfully installed to: /usr/local/bin/composer
Use it: php /usr/local/bin/composer

As all of the source code is hosted on Github which is a Git based source control system, we need to install git itself. Do this with:

yum install git -y

seat download

Finally, we get to install SeAT itself. The first thing we need to do is to decide where to save SeAT itself. This directory should have enough space for the cached XML files to live on, as well as a few log files should you need to debug problems. The recommended location is /var/www/seat/. To save SeAT in this directory, first change to it:

cd /var/www

Next, we will download SeAT using composer and save it to the seat directory.NOTE This can take some time, Composer does a ton of magic here :+1: (like recursively resolving all dependencies :O)

composer create-project eveseat/seat seat --keep-vcs --prefer-source --no-dev

Successful installation should end with something like:

Do you want to remove the existing VCS (.git, .svn..) history? [Y,n]? y
> php artisan key:generate
Application key [mkzxy4ubHOPVQ05LwyFK2ii0vPxvVMMj] set successfully.

seat permissions

SeAT writes logfiles/cachefiles and other temporary data to the seat/storage/ directory. That together with the fact that the web content will be hosted by apache means that we need to configure the files permissions to allow SeAT do do its thing.

First, lets ensure that apache owns everything in /var/www/seat which is the folder we just downloaded SeAT to:

chown -R apache:apache /var/www/seat

Next, we will allow Apache to write to the seat/storage/ directory so that it may manipulate the files in there as needed:

chmod -R guo+w /var/www/seat/storage/

SeAT is now downloaded and almost ready for use!

selinux

Many people hate SELinux, primarily due to a misunderstanding of what it does and how it works. SeAT can run perfectly fine with SELinux enabled, and I actually encourage you to leave it enabled. There is however one small settings change required to make everything work as expected.

First, we have to allow apache to make network connections. This is so that we may connect to the EVEAPI, as well as the MySQL database and Redis. Configure this with:

setsebool -P httpd_can_network_connect 1

Next, we have to ensure that the files and folders in /var/www/seat is correctly labelled in order to prevent SELinux from blocking perfectly normal behaviour. Check this with:

restorecon -Rv /var/www/seat

Thats it. Pretty painless eh? :)

seat setup

NOTE The installer will automate this jazz, so just the commands for now.

Edit /var/www/seat/.env
DB_HOST=localhost
DB_DATABASE=seat
DB_USERNAME=seat
DB_PASSWORD=s_p3rs3c3r3tp455w0rd

CACHE_DRIVER=redis
SESSION_DRIVER=file
QUEUE_DRIVER=redis

php artisan vendor:publish --force

php artisan migrate

php artisan db:seed --class=Seat\\Services\\database\\seeds\\NotificationTypesSeeder
php artisan db:seed --class=Seat\\Services\\database\\seeds\\ScheduleSeeder

php artisan eve:update-sde -n

php artisan seat:admin:reset

supervisor

SeAT makes use of workers to actually process the update jobs that get scheduled. Think if the architecture as someone coming and dumping mail at the postoffice, and its up to say 4 workers to dig through the mail and sort it. Those 4 workers need a manager to ensure that they keep working. supervisord is a excellent candidate for the manager job.

Lets install supervisor, start it and configure it to start automatically the next time the server boots:

yum install supervisor -y

/etc/init.d/supervisord start

chkconfig supervisord on

We now have to configure the actual workers that supervisord will manage. We do this by adding program configuration blocks to /etc/supervisord.conf. The sample below can simply be added to the bottom of the existing configuration file.Note The sample has the program defined as [program:seat1]. If you want to run 4 workers, you need to add this to the supervisord.conf 4 times. So you will have 4 blocks with incrementing numbers ie. [program:seat1], [program:seat2], [program:seat3] & [program:seat4]. You also have to keep in mind where the artisan file is located. If you followed this guide to the T, it will be at /var/www/seat/artisan.

So, open up /etc/supervisord.conf and paste the below block in at the bottom of the file:

[program:seat1]
command=/usr/bin/php /var/www/seat/artisan queue:listen --queue=high,medium,low,default --tries 1 --timeout=3600
directory=/var/www/seat
stopwaitsecs=600
user=apache
stdout_logfile=/var/log/seat_out.log
stdout_logfile_maxbytes=100MB
stdout_logfile_backups=10
stderr_logfile=/var/log/seat_err.log
stderr_logfile_maxbytes=100MB
stderr_logfile_backups=5

Save your file and reload supervisord so that it is aware of the changes that we have made:

supervisorctl reload

Lastly, check that everything is OK and the workers have started up:

[root@seat seat]# supervisorctl status
seat1 RUNNING pid 2677, uptime 0:01:13

If you do not have output such as in the above block, check the log files for any possible errors.

crontab

So far, we have SeAT workers running meaning that it is ready to process jobs that enter the Queue. We now need a way to add jobs to that Queue for processing by the workers.SeAT has a build in schedule for when what should run at which interval. With the cronjob, we are simply telling SeAT to check every minute “is there anything we should be doing?”. We will add the cronjob as the apache user as this is the user that has had all its permissions configured earlier.

Open up the crontab for apache with:

crontab -u apache -e

Next, paste the following line at the bottom of the file (remember to check the path if you chose one other that the one in this guide):

* * * * * /usr/bin/php /var/www/seat/artisan schedule:run 1>> /dev/null 2>&1

webserver - apache

In order to get the SeAT fronted running, we need to configure Apache to serve our SeAT installs public/ folder. This is the only folder that should be internet facing. That small index.php is the gateway into the application.
The Apache configuration itself will depend on how your server is set up. Generally, virtual hosting is the way to go, and this is what I will be showing here.

If you are not going to use virtual hosting, the easiest to get going will probably to symlink /var/www/seat/public/ to /var/www/html/seat and configuring apache to AllowOverride All in the <Directory "/var/www/html"> section. This should have SeAT available at http://your-host-name-or-ip/seat after you restart apache.

virtual host setup

Getting the virtual host setup is as simple as creating a new configuration file (I usually call it the sites-domain.conf), and modifying it to match your setup. Everywhere you see seat.local as the hostname in the below examples it needs to be substituted to your actual domain.

Lets prepare some directories. We create the directory /var/www/html/seat.local with:

mkdir /var/www/html/seat.local

Next we symlink the SeAT public directory there with:

ln -s /var/www/seat/public /var/www/html/seat.local/seat

Next, we have to configure Apache itself to know about the directories and stuff SeAT needs. We need to create that sites-domain.conf file I mentioned. This file should live in /etc/httpd/conf.d, so lets change directories there:

cd /etc/httpd/conf.d

Now, create the conf file. In my case, the domain is seat.local, so I will call it seat.local.conf. Add the following contents to that file:

<VirtualHost *:80>
 ServerAdmin webmaster@your.domain
 DocumentRoot "/var/www/html/seat.local"
 ServerName seat.local
 ServerAlias www.seat.local
 ErrorLog "logs/seat.local-error_log"
 CustomLog "logs/seat.local-access_log" common
 <Directory "/var/www/html/seat.local">
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

With our config file created, we need to restart apache to read the new file:

apachectl restart

That should be it from a configuration perspective. We can confirm that everything is configured correctly by running:

[root@seat conf.d]# apachectl -t -D DUMP_VHOSTS
httpd: Could not reliably determine the server's fully qualified domain name, using seat.localdomain for ServerName
VirtualHost configuration:
wildcard NameVirtualHosts and _default_ servers:
*:80 seat.local (/etc/httpd/conf.d/seat.local.conf:1)
Syntax OK

Thats it! SeAT should now be available at http://your-domain-or-ip/seat

 © Copyright 2016.
 Created using Sphinx 1.3.5.

changelogs/api.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

api change logs

Generated with: git log --oneline --decorate

1.0.9

22f8b34 (tag: 1.0.9) Version Bump
f6bfc7e Update copyright
7f24bf8 Code style fixes

1.0.8

2409d0c (tag: 1.0.8) Version Bump
ad8351a Add Corp Pocos Endpoint

1.0.7

6ca59b0 (tag: 1.0.7) Version Bump
603cb76 Add ability to get a specific starbases info

1.0.6

a949267 (tag: 1.0.6) Version Bump
8f5c35f Allow for API Keys to be transferred to a different User
c712823 Add starbase and assets-by-location endpoints

1.0.5

220b7bb (tag: 1.0.5) Version Bump
86c4602 Specify versions with ~

1.0.4

3b80952 (tag: 1.0.4) Version Bump
55269b9 Add char & corp Bookmarks endpoints
b65799f Add Character Channels endpoint

1.0.3

dee0f28 (tag: 1.0.3) Version Bump
76647e9 Add localization support
de62767 (tag: 1.0.2) Update README.md

1.0.1

cc4ea85 (tag: 1.0.1) Version Bump
16c3896 Dont use a sub-menu
88348cb Cleanup Middleware and add Request Path logging

1.0.0

03064d4 (tag: 1.0.0) Add admin views, complete middleware and add menu.
c11ca2e Add Corporation API Endpoints
122f2da Add Character API Endpoints
dda7cbb Add endpoint to validate credentials
014502b Add roles and permissions query endpoint
4e88616 Add endpoints to get Role information
4516aaa Add CRUD for User management
2d129ea Update links to eveseat/api
2c2cef3 Fix typo
5620aa2 Update README
6905c26 Compelte the EVE API Key API
32d17cf First preperations for the SeAT API
57f8c6d first commit

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

configuration/service.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Package: eveseat/servicesConfig: here [https://github.com/eveseat/services/tree/master/src/Config]

File: services.config.php

return [

];

Options

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

configuration/notifications.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Package: eveseat/notificationsConfig: here [https://github.com/eveseat/notifications/tree/master/src/Config]

File: notifications.config.php

return [

];

Options

File: notifications.notifiers.php

return [
 Seat\Notifications\Notifiers\EmailNotifier::class
];

Options

This configuration file simply returns an array of notifier classes.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

development/package_breakdown.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

understanding the core SeAT packages

		eveseat/api link [https://github.com/eveseat/api]Namespace: Seat\ApiThis repository contains all of the SeAT Api Endpoints. A full description of available methods can be found here: [[SeAT API Reference|SeAT-API-Reference]]

		eveseat/console link [https://github.com/eveseat/console]Namespace: Seat\ConsoleThis repository contains all of the SeAT console applications. Console apps are accessed via the artisan command line eg: php artisan seat:version. The console applications typically make use of repository classes (more on these later) in the eveseat/services repo to retrieve and set information from the database. For more information on how to write a Laravel Console Command, see the documentation here [http://laravel.com/docs/5.1/artisan]

		eveseat/eveapi link [https://github.com/eveseat/eveapi]Namespace: Seat\EveapiThis repository is the heart of the EVE API update logic. It is responsible for doing the actual update work, pulling the EVE API XML documents, parsing them and storing the resultant data in the database. Most of the date models live in this repository

		eveseat/notifications link [https://github.com/eveseat/notifications]Namespace: Seat\NotificationsThis repository contains a set of scheduled jobs that perform notifications type tasks. A notification can be something as simple as an alert about a corporation member that has been inactive for a period of time.

		eveseat/web link [https://github.com/eveseat/eveapi]Namespace: Seat\EveapiThis repository contains the web interface for SeAT. It contains by far the most complex service provider [https://github.com/eveseat/web/blob/master/src/WebServiceProvider.php] and will undoubtedly become the prime example/reference when developing packages for SeAT. This package is also the only one that has a permissions / ACL concept. Refer the to the permissions wiki document for more information.

		eveseat/seat link [https://github.com/eveseat/seat]Namespace: AppThis is the main SeAT repository. It does not really contain much logic. It should actually be seen as the glue between all of the packages. This is the repository that is cloned when a new installation is done.The most important part of this repository is the service providers that are bootstrapped with the application. The providers array [https://github.com/eveseat/seat/blob/master/config/app.php#L111] has the default Laravel providers as well as the SeAT providers at the end. These providers tell the application where to find routes, views, configs etc. For more detailed information, refer to the Laravel 5.1 documentation [http://laravel.com/docs/5.1/providers]. When you write your package, the user will have to add your provider to this very providers array for the package to become available, just like the SeAT core packages.

		eveseat/services link [https://github.com/eveseat/services]Namespace: Seat\ServicesThis repository contains ‘services’. A service is defined as any form of helper and or repository that other packages can depend on. The eveseat/web package (amongst others) make heavy use of the repository classes in this package.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

eve_xml_api_updater/job_queue_flow.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

The current flow of things when a job enters the system can be seen below:

[image: Flow]

An editable draw.io [https://www.draw.io/] xml to import can be found here: eveapi.xml [https://drive.google.com/file/d/0B68sG3eQAkceZkdlcUd5R2E1VkE/view?usp=sharing]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

todo.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

The SeAT TODO list!

This list is supposed to give a very brief idea of whats coming™. It is the stuff that should be developed; should be improved; should be fixed etc. All items in this list is very high level and should be interpreted from a long term perspective. Of course, there are also the Github tickets tagged as wishlist items: https://github.com/eveseat/seat/labels/wishlist.

the list

		~~Table sorting, filtering etc.~~

		Wallet Ledger with reporting capabilities.

		Export to CSV / Excel ability for datasets

		RBAC Wiki Documentation

		RBAC roles additions for; all characters; all corporations

		RBAC roles exclusions for; NOT character_id; NOT corporation_id

		Integration: Teamspeak3

		Integration: Mumble

		Integration: Openfire

		Integration: PHPBB

		Integration: SMF

		Character public views if key does not exist.

		Read package schedules from a config file and seed them using the ScheduleSeeder

		Add People groups to track mains and alts

		Implement the Search functionality

wishlist

Many features are requested via the github issues page. This list is a collection of those feature requests. They are ‘wishlist’ items as the feeling is they need to be solved via a SeAT package

the wishlist

		Recruitment Page ref [https://github.com/eveseat/seat/issues/30]

		SRP ref [https://github.com/eveseat/seat/issues/31]

		NodeBB Integration ref [https://github.com/eveseat/seat/issues/32]

		Starbase Siphon Detection ref [https://github.com/eveseat/seat/issues/47]

		Starbase Timer Board ref [https://github.com/eveseat/seat/issues/53]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

setup_guides/quick_install.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

To get up and running for development purposes, follow the next few quick steps:

		Get composer if don’t already have it: curl -sS https://getcomposer.org/installer | php

		Create the seat project: php composer.phar create-project eveseat/seat. This will leave SeAT in the seat directory relative to the one you ran the create-project command in.

		cd to the seat directory and publish the packages migrations / assets: php artisan vendor:publish --force

		Edit .env with your MySQL database details

		Run the migrations: php artisan migrate

		Set an admin password with php artisa seat:admin:reset

		Update the SDE with php artisan eve:update-sde

		Serve the development server: php artisan serve

 © Copyright 2016.
 Created using Sphinx 1.3.5.

seat_api.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

introduction

SeAT has a RESTful API. Endpoints are protected by a access token that is limited by IP address. For every IP address that wants to make API requests to SeAT, a unique token is required.API Tokens have no concept of ACL’s. The API should primarily be used for integration with other systems.

definitions

Currently, all API endpoints live at <seat url>/api/<version> where <sear url> is the full url to your SeAT instance and <version> is the API version you wish to interact with.

authentication

Authentication to the SeAT API is done via a X-Token header. A token may be obtained by browsing to the API settings page in the SeAT WebUI and generating one. A sample request using curl with an authentication token can be seen below:

$ curl -X GET -H "X-Token:123456" -H "Accept: application/json" http://localhost:8000/api/v1/key
* Trying ::1...
* Connected to localhost (::1) port 8000 (#0)
> GET /api/v1/key HTTP/1.1
> Host: localhost:8000
> User-Agent: curl/7.43.0
> Accept: application/json
> X-Token:123456
>
< HTTP/1.1 200 OK
< Host: localhost:8000
< Connection: close
< Cache-Control: no-cache
< Date: Sat, 28 Nov 2015 22:27:12 GMT
< Content-Type: application/json

content-type

Make sure you specify the Accepted content-type header as application/json. When using cURL, you can specify it with -H

Example:

$ curl -X POST https://seat.testsite.local/api/v1/key -H "Accept: application/json" -H "X-Token: L3SxgdX4XUw6pVWVSCftgsh16eAbBF3D" -d "key_id=123&v_code=123"
{"v_code":["The v code must be 64 characters."]}

If you don’t do this, the API will respond with a redirect and not give you the expected content.

errors

All SeAT API responses will include the appropriate HTTP response codes. You should check this for error handling purposes. Some sample response codes could be:

		HTTP 200 OK - The request was successful.

		HTTP 404 Not Found - The requested endpoint could not be found.

		HTTP 422 Unprocessable Entity - Typically, input validation has failed. The response json should contain the errors.

		HTTP 500 Internal Server Error - Something bad has happened. Check the server and Laravel log files for more details.

endpoints for version1 (/api/v1)

All methods below have the requests and responses sampled using httpie [https://github.com/jkbrzt/httpie]

		Eve Api Keys

		List All

		List Single

		Add an EVE API Key

		Edit an EVE API Key

		Delete an EVE API Key

		Transfer an EVE API Key

		SeAT Users

		List All

		Show Detail

		Add a User

		Edit a User

		Delete a User

		SeAT Roles

		List All

		Show Detail

		SeAT Access Queries

		List Available Permissions

		User has Role

		User has Permission

		Validate SeAT Credentials

		Character Information

		Assets

		Bookmarks

		Contacts

		Channels

		Character Info

		Industry

		Killmails

		Market Orders

		Contracts

		Character Sheet

		Skills

		Skill In Training

		Skill Queue

		Wallet Journal

		Wallet Transactions

		Employment History

		Implants

		Jump Clones

		Account Info

		Mail

		Notifications

		Planetary Interaction

		Standings

		Research

		Calendar Events

		Corporation Information

		Assets

		Assets by Location

		Bookmarks

		Contacts

		Contracts

		Customs Offices

		Divisions

		Industry

		Killmails

		Market Orders

		Member Security

		Member Security Logs

		Member Security Titles

		Member Tracking

		Sheet

		Standings

		Starbases

		Wallet Divisions

		Wallet Journal

		Wallet Transactions

List all EVE API Keys

		HTTP Verb: GET

		Endpoint: /api/v1/key

		Parameters: None

		Description: List all recorded EVE API Keys from the database.

		Sample Request:

http get http://localhost:8000/api/v1/key Accept:application/json X-Token:123456

		Sample Response:

{
 "created_at": "2015-11-21 14:12:40",
 "disabled_calls": null,
 "enabled": 1,
 "key_id": 123445,
 "last_error": "221:Illegal page request! Please verify the access granted by the key you are using!",
 "updated_at": "2015-11-21 14:14:11",
 "user_id": 1,
 "v_code": "IDT1wqjWtl9QGFGHPb5Zj0kle7EnQxWDiscH64aN44qhE07oOBTfCCLFmc3uj2Hf"
}

Get a single EVE API Key

		HTTP Verb: GET

		Endpoint: /api/v1/key/{key_id}

		Parameters:

		key_id - The keyID to retrieve

		Description: Get details for a single EVE API Key.

		Sample Request:

http get http://localhost:8000/api/v1/key/123445 Accept:application/json X-Token:123456

		Sample Response:

{
 "created_at": "2015-11-21 14:12:40",
 "disabled_calls": null,
 "enabled": 1,
 "key_id": 123445,
 "last_error": "221:Illegal page request! Please verify the access granted by the key you are using!",
 "updated_at": "2015-11-21 14:14:11",
 "user_id": 1,
 "v_code": "IDT1wqjWtl9QGFGHPb5Zj0kle7EnQxWDiscH64aN44qhE07oOBTfCCLFmc3uj2Hf"
}

Add an EVE API Key

		HTTP Verb: POST

		Endpoint: /api/v1/key

		Parameters:

		key_id - The keyID to add

		v_code - The vCode to add

		Description: Add an EVE API key to the database

		Sample Request:

http post http://localhost:8000/api/v1/key Accept:application/json X-Token:123456 key_id=123 v_code=JYKyPvIv75PN58UWcRcPHrtYKb4ySThFBk3n2qN4eaYGgCr1mrJbOwvQfHqNnf5k

		Sample Response:

[
 "ok"
]

Edit an EVE API Key

		HTTP Verb: PUT

		Endpoint: /api/v1/key/{key_id}

		Parameters:

		key_id - The keyID to update

		All other values are optional to update the key

		Description: Edit an EVE API key in the database

		Sample Request:

sets an api key to enabled for the eveapi updater
http put http://localhost:8000/api/v1/key/1234 Accept:application/json X-Token:123456 enabled=1

		Sample Response:

[
 "ok"
]

Delete an EVE API Key

		HTTP Verb: DELETE

		Endpoint: /api/v1/key/{key_id}

		Parameters:

		key_id - The keyID to delete

		Description: Delete an EVE API key from the database

		Sample Request:

http delete http://localhost:8000/api/v1/key/1234 Accept:application/json X-Token:123456

		Sample Response:

[
 "ok"
]

Transfer an EVE API Key

		HTTP Verb: GET

		Endpoint: /api/v1/key/transfer/{key_id}/{user_id}

		Parameters:

		key_id - The keyID to transfer

		user_id - The SeAT User id to get key ownership

		Description: Transfer ownership of an EVE API Key.

		Sample Request:

http get http://localhost:8000/api/v1/key/transfer/123456/10 Accept:application/json X-Token:123456

		Sample Response:

[
 "ok"
]

List all Users

		HTTP Verb: GET

		Endpoint: /api/v1/user

		Parameters: None

		Description: List all SeAT Users from the database.

		Sample Request:

http get http://localhost:8000/api/v1/user Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "active": 0,
 "created_at": "2015-11-21 14:12:07",
 "email": "admin@seat.local",
 "id": 1,
 "last_login": "2015-11-29 08:18:28",
 "last_login_source": "::1",
 "name": "admin",
 "updated_at": "2015-11-29 08:18:28"
 },
 {
 "active": 0,
 "created_at": "2015-11-26 18:58:29",
 "email": "test@test.com",
 "id": 2,
 "last_login": "2015-11-26 18:58:29",
 "last_login_source": "::1",
 "name": "test",
 "updated_at": "2015-11-26 21:11:12"
 }
]

Show User Detail

		HTTP Verb: GET

		Endpoint: /api/v1/user/{identifier}

		Parameters:

		identifier - The identifier for the user. Can be either the user_id or name

		Description: Get details for a single SeAT User. Shows owned EVE API keys, Roles and Affiliations

		Sample Request:

http get http://localhost:8000/api/v1/user/test Accept:application/json X-Token:123456

		Sample Response:

{
 "active": 0,
 "affiliations": [],
 "created_at": "2015-11-26 18:58:29",
 "email": "test@test.com",
 "id": 2,
 "keys": [
 {
 "created_at": "2015-11-21 14:12:40",
 "disabled_calls": null,
 "enabled": 1,
 "key_id": 1234,
 "last_error": "221:Illegal page request! Please verify the access granted by the key you are using!",
 "updated_at": "2015-11-21 14:14:17",
 "user_id": 2,
 "v_code": "JYKyPvIv75PN58UWcRcPHrtYKb4ySThFBk3n2qN4eaYGgCr1mrJbOwvQfHqNnf5k"
 }
],
 "last_login": "2015-11-26 18:58:29",
 "last_login_source": "::1",
 "name": "test",
 "roles": [
 {
 "id": 2,
 "pivot": {
 "role_id": 2,
 "user_id": 2
 },
 "title": "Corp Accountant"
 }
],
 "updated_at": "2015-11-26 21:11:12"
}

Add a SeAT User

		HTTP Verb: POST

		Endpoint: /api/v1/user

		Parameters:

		username - The username

		email - The email address

		password - The password for the user

		Description: Adds a SeAT user

		Sample Request:

http post http://localhost:8000/api/v1/user Accept:application/json X-Token:123456 username=api_user email=test@localhost.local password=blahblah

		Sample Response:

[
 "ok"
]

Edit a User

		HTTP Verb: PUT

		Endpoint: /api/v1/user/{identifier}

		Parameters:

		identifier - The identifier for the user. Can be either the user_id or name

		All other values are optional to update the key

		Description: Edit a SeAT User in the database

		Sample Request:

changes a users password and make the user active
http put http://localhost:8000/api/v1/user/api_user Accept:application/json X-Token:123456 password=blahblahr active=1

		Sample Response:

[
 "ok"
]

Delete a User

		HTTP Verb: DELETE

		Endpoint: /api/v1/user/{identifier}

		Parameters:

		identifier - The identifier for the user. Can be either the user_id or name

		Description: Delete a SeAT User from the database

		Sample Request:

http delete http://localhost:8000/api/v1/user/api_user Accept:application/json X-Token:123456

		Sample Response:

[
 "ok"
]

List all Roles

		HTTP Verb: GET

		Endpoint: /api/v1/role

		Parameters: None

		Description: List all recorded Roles from the database.

		Sample Request:

http get http://localhost:8000/api/v1/role Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "id": 1,
 "title": "Superuser"
 },
 {
 "id": 2,
 "title": "Corp Accountants"
 }
]

Show Role Detail

		HTTP Verb: GET

		Endpoint: /api/v1/role/{identifier}

		Parameters:

		identifier - The identifier for the Role. Can be either the role_id or title

		Description: Get details for a single SeAT Role. Shows Users with the Role, Permissions as well as Affiliations

		Sample Request:

http get http://localhost:8000/api/v1/role/2 Accept:application/json X-Token:123456

		Sample Response:

{
 "affiliations": [
 {
 "affiliation": 123456,
 "id": 2,
 "pivot": {
 "affiliation_id": 2,
 "role_id": 2
 },
 "type": "corp"
 }
],
 "id": 2,
 "permissions": [
 {
 "id": 2,
 "pivot": {
 "permission_id": 2,
 "role_id": 2
 },
 "title": "corporation.wallet_journal"
 }
],
 "title": "Corp Accountants",
 "users": [
 {
 "active": 0,
 "created_at": "2015-11-21 14:12:07",
 "email": "admin@seat.local",
 "id": 1,
 "last_login": "2015-11-30 03:55:44",
 "last_login_source": "::1",
 "name": "admin",
 "pivot": {
 "role_id": 2,
 "user_id": 1
 },
 "updated_at": "2015-11-30 03:55:44"
 },
 {
 "active": 0,
 "created_at": "2015-11-26 18:58:29",
 "email": "test@test.com",
 "id": 2,
 "last_login": "2015-11-26 18:58:29",
 "last_login_source": "::1",
 "name": "test",
 "pivot": {
 "role_id": 2,
 "user_id": 2
 },
 "updated_at": "2015-11-26 21:11:12"
 }
]
}

List all Permissions

		HTTP Verb: GET

		Endpoint: /api/v1/role/query/permissions

		Parameters: None

		Description: List all of the possible SeAT Permissions.

		Sample Request:

http get http://localhost:8000/api/v1/role/query/permissions Accept:application/json X-Token:123456

		Sample Response:

{
 "0": "superuser",
 "1": "queue_manager",
 "apikey": [
 "delete",
 "detail",
 "toggle_status",
 "list",
 "update"
],
 "character": [
 "assets",
 "calendar",
 "contacts",
 "contracts",
 "industry",
 "killmails",
 "list",
 "mail",
 "market_orders",
 "notifications",
 "pi",
 "research_agents",
 "skills",
 "standings",
 "sheet",
 "wallet_journal",
 "wallet_transactions"
]
}

User has Role

		HTTP Verb: GET

		Endpoint: /api/v1/role/query/role-check/{user_identifier}/{role_identifier}

		Parameters:

		user_identifier - The identifier for the User. Can be either the user_id or name

		role_identifier - The identifier for the Role. Can be either the role_id or title

		Description: Determine if a SeAT user has a specific SeAT Role

		Sample Request:

// Note the quotes around the URL. If your role names have spaces in them,
// make sure you properly url encode them before adding it to the URL itself.
http get "http://localhost:8000/api/v1/role/query/role-check/admin/Corp Accountants" Accept:application/json X-Token:123456

		Sample Response:

true

User has Permission

		HTTP Verb: GET

		Endpoint: /api/v1/role/query/permission-check/{user_identifier}/{permission}

		Parameters:

		user_identifier - The identifier for the User. Can be either the user_id or name

		permission - The identifier for the Permission. Available permissions can be found at the permissions list

		Description: Determine if a SeAT user has a specific SeAT Permission NOTE This endpoint does not honor affiliation rules!**

		Sample Request:

http get http://localhost:8000/api/v1/role/query/permission-check/test/corporation.assets Accept:application/json X-Token:123456

		Sample Response:

false

Validate SeAT Credentials

		HTTP Verb: POST

		Endpoint: /api/v1/user/auth/login

		Parameters:

		username - The username

		password - The password for the user

		Description: Validates SeAT User Credentials

		Sample Request:

http post http://localhost:8000/api/v1/user/auth/login Accept:application/json X-Token:123456 username=api_user password=blahblah

		Sample Response:

true

Character Assets

		HTTP Verb: GET

		Endpoint: /api/v1/character/assets/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters assets list.

		Sample Request:

http get http://localhost:8000/api/v1/character/assets/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "anchorable": 0,
 "anchored": 0,
 "basePrice": null,
 "capacity": 115,
 "categoryID": 6,
 "characterID": 123456,
 "created_at": "2015-11-21 15:17:48",
 "description": "The Impairor-class rookie ship has been mass-produced by the Amarr Empire for decades. It is the most common spacevessel sighted within the Amarrian boundaries, and is used both as a basic trade vessel and as a small-scale slave transport. ",
 "fittableNonSingleton": 0,
 "flag": 4,
 "groupID": 237,
 "groupName": "Rookie ship",
 "iconID": 0,
 "itemID": 1012596637277,
 "locID": 61000423,
 "location": "NLO-3Z VI - NLO ne proletalo",
 "locationID": 61000423,
 "marketGroupID": 1816,
 "mass": 1148000,
 "portionSize": 1,
 "published": 1,
 "quantity": 1,
 "raceID": 4,
 "rawQuantity": -1,
 "singleton": 1,
 "soundID": 20063,
 "typeID": 596,
 "typeName": "Impairor",
 "updated_at": "2015-11-21 15:17:48",
 "useBasePrice": 0,
 "volume": 28100
 }
]

Character Bookmarks

		HTTP Verb: GET

		Endpoint: /api/v1/character/bookmarks/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters bookmarks.

		Sample Request:

http get http://localhost:8000/api/v1/character/bookmarks/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "bookmarkID": 123456,
 "characterID": 123456,
 "created": "2012-12-28 22:22:29",
 "created_at": "2015-12-18 20:59:33",
 "creatorID": 123456,
 "folderID": 0,
 "folderName": "",
 "id": 5,
 "itemID": 0,
 "locationID": 123456,
 "mapID": 123456,
 "mapName": "Oh - Asteroid Belt 4",
 "memo": "Thing",
 "note": "",
 "typeID": 5,
 "updated_at": "2015-12-18 21:10:48",
 "x": 571196991137.98,
 "y": 26236744140.097,
 "z": -723589323955.36
 }
]

Character Channels

		HTTP Verb: GET

		Endpoint: /api/v1/character/channels/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters chat channels.

		Sample Request:

http get http://localhost:8000/api/v1/character/channels/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "channelID": -123456,
 "characterID": 123456,
 "created_at": "2015-11-21 14:23:23",
 "info": {
 "channelID": -123456,
 "comparisonKey": "abc-chan",
 "created_at": "2015-11-21 14:23:23",
 "displayName": "ABC Chan",
 "hasPassword": 0,
 "motd": "Some MoTD",
 "ownerID": 123456,
 "ownerName": "ABC",
 "updated_at": "2015-12-18 21:41:40"
 },
 "members": [
 {
 "accessorID": 123456,
 "accessorName": "ABC",
 "channelID": -123456,
 "created_at": "2015-11-21 14:23:23",
 "id": 5,
 "reason": null,
 "role": "allowed",
 "untilWhen": null,
 "updated_at": "2015-11-21 14:23:23"
 }
],
 "updated_at": "2015-11-21 14:23:23"
 }
]

Character Contacts

		HTTP Verb: GET

		Endpoint: /api/v1/character/contacts/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters contacts list.

		Sample Request:

http get http://localhost:8000/api/v1/character/contacts/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "contactID": 123,
 "contactName": "Bob",
 "contactTypeID": 16159,
 "created_at": "2015-11-21 15:17:55",
 "inWatchlist": 0,
 "labelMask": 0,
 "standing": -10,
 "updated_at": "2015-11-21 15:17:55"
 }
]

Character Info

		HTTP Verb: GET

		Endpoint: /api/v1/character/info/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get information about the character.

		Sample Request:

http get http://localhost:8000/api/v1/character/info/123456 Accept:application/json X-Token:123456

		Sample Response:

{
 "accountBalance": "9349819.63",
 "alliance": null,
 "allianceDate": null,
 "allianceID": null,
 "ancestry": "Cyber Knights",
 "ancestryID": 37,
 "bloodline": "Khanid",
 "bloodlineID": 13,
 "characterID": 123456,
 "characterName": "Bob",
 "corporation": "Bob's Corp",
 "corporationDate": "2013-08-19 13:34:00",
 "corporationID": 123456,
 "corporationName": "Bob's Corp",
 "created_at": "2015-11-21 14:14:50",
 "keyID": 1111223,
 "lastKnownLocation": "CO-7BI",
 "nextTrainingEnds": null,
 "race": "Amarr",
 "securityStatus": "0.0000000000000",
 "shipName": "Bob's Sarum Magnate",
 "shipTypeID": 29248,
 "shipTypeName": "Magnate",
 "skillPoints": 1219086,
 "updated_at": "2015-11-21 15:17:42"
}

Character Industry

		HTTP Verb: GET

		Endpoint: /api/v1/character/industry/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a list of the characters industry jobs.

		Sample Request:

http get http://localhost:8000/api/v1/character/industry/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "activityID": 1,
 "activityName": "Manufacturing",
 "blueprintID": 1004842307489,
 "blueprintLocationID": 60013072,
 "blueprintTypeID": 2517,
 "blueprintTypeName": "Nova Rocket Blueprint",
 "characterID": 123456,
 "completedCharacterID": 0,
 "completedDate": "0001-01-01 00:00:00",
 "cost": 0,
 "created_at": "2015-11-21 14:37:35",
 "description": "Manufacturing",
 "endDate": "2012-12-06 15:42:50",
 "facilityID": 60013072,
 "facilityName": "WY-9LL VIII - Moon 3 - Dominations Testing Facilities",
 "iconNo": "18_02",
 "id": 23,
 "installerID": 123456,
 "installerName": "Bob",
 "jobID": 159368411,
 "licensedRuns": 0,
 "outputLocationID": 60013072,
 "pauseDate": "0001-01-01 00:00:00",
 "probability": 0,
 "productTypeID": 2516,
 "productTypeName": "Nova Rocket",
 "published": 1,
 "runs": 100,
 "solarSystemID": 30004621,
 "solarSystemName": "WY-9LL",
 "startDate": "2012-12-06 09:02:50",
 "stationID": 60013072,
 "status": 1,
 "successfulRuns": 0,
 "teamID": 0,
 "timeInSeconds": 24000,
 "updated_at": "2015-11-25 13:59:31"
 }
]

Character Killmails

		HTTP Verb: GET

		Endpoint: /api/v1/character/killmails/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a list of the characters killmails.

		Sample Request:

http get http://localhost:8000/api/v1/character/killmails/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "allianceID": 123456,
 "allianceName": "Bob Alliance",
 "basePrice": null,
 "capacity": 0,
 "celestialIndex": null,
 "characterID": 123456,
 "characterName": "Bob",
 "constellationID": 20000124,
 "corporationID": 123456,
 "corporationName": "Bob's Corp",
 "created_at": "2015-11-25 14:17:51",
 "damageTaken": 464,
 "description": "Standard capsule.",
 "factionID": 0,
 "factionName": "",
 "groupID": 5,
 "iconID": 73,
 "itemID": 30000848,
 "itemName": "M-OEE8",
 "killID": 50337764,
 "killTime": "2015-11-24 17:15:10",
 "marketGroupID": null,
 "mass": 32000,
 "moonID": 0,
 "orbitID": null,
 "orbitIndex": null,
 "ownerID": 123456,
 "portionSize": 1,
 "published": 0,
 "raceID": 16,
 "radius": 4145289179056,
 "regionID": 10000010,
 "security": -0.218329,
 "shipTypeID": 670,
 "solarSystemID": null,
 "soundID": 20080,
 "typeID": 5,
 "typeName": "Capsule",
 "updated_at": "2015-11-25 14:17:51",
 "victimID": 1209964167,
 "volume": 1000,
 "x": -1.4759869943375e+17,
 "y": 7.9788702592936e+16,
 "z": 2.0063317959704e+17
 }
]

Character Market Orders

		HTTP Verb: GET

		Endpoint: /api/v1/character/market-orders/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a list of the characters market orders.

		Sample Request:

http get http://localhost:8000/api/v1/character/market-orders/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "accountKey": 1000,
 "anchorable": 1,
 "anchored": 0,
 "basePrice": null,
 "bid": 0,
 "capacity": 0,
 "categoryID": 22,
 "charID": 123456,
 "created_at": "2015-11-21 14:56:54",
 "description": "A Medium deployable self powered unit that prevents warping within its area of effect. ",
 "duration": 90,
 "escrow": "0.00",
 "fittableNonSingleton": 0,
 "groupID": 361,
 "groupName": "Mobile Warp Disruptor",
 "iconID": 0,
 "id": 643,
 "issued": "2015-08-28 09:33:49",
 "marketGroupID": 405,
 "mass": 0,
 "minVolume": 1,
 "orderID": 4239146614,
 "orderState": 0,
 "portionSize": 1,
 "price": "6428570.71",
 "published": 1,
 "raceID": null,
 "range": 32767,
 "soundID": null,
 "stationID": 60015138,
 "stationName": "Dihra V - 24th Imperial Crusade Logistic Support",
 "typeID": 12199,
 "typeName": "Mobile Medium Warp Disruptor I",
 "updated_at": "2015-11-21 14:56:54",
 "useBasePrice": 0,
 "volEntered": 1,
 "volRemaining": 1,
 "volume": 195
 }
]

Character Contracts

		HTTP Verb: GET

		Endpoint: /api/v1/character/contracts/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a list of the characters contracts.

		Sample Request:

http get http://localhost:8000/api/v1/character/contracts/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "acceptorID": 123456,
 "assigneeID": 123456,
 "availability": "Private",
 "buyout": "0.00",
 "characterID": 123456,
 "collateral": "0.00",
 "contractID": 98201250,
 "created_at": "2015-11-21 14:56:12",
 "dateAccepted": "2015-10-23 11:53:20",
 "dateCompleted": "2015-10-23 11:53:20",
 "dateExpired": "2015-11-06 11:52:59",
 "dateIssued": "2015-10-23 11:52:59",
 "endStationID": 61000655,
 "endlocation": "2D-0SO XI - Tax Evasion No More",
 "forCorp": 0,
 "issuerCorpID": 123456,
 "issuerID": 123456,
 "numDays": 0,
 "price": "0.00",
 "reward": "0.00",
 "startStationID": 61000655,
 "startlocation": "2D-0SO XI - Tax Evasion No More",
 "status": "Completed",
 "title": "",
 "type": "ItemExchange",
 "updated_at": "2015-11-21 14:56:12",
 "volume": 112000
 }
]

Character Sheet

		HTTP Verb: GET

		Endpoint: /api/v1/character/sheet/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters character sheet.

		Sample Request:

http get http://localhost:8000/api/v1/character/sheet/123456 Accept:application/json X-Token:123456

		Sample Response:

{
 "DoB": "2006-11-16 05:36:00",
 "allianceID": 123456,
 "allianceName": "Bob's Alliance",
 "ancestry": "Artists",
 "ancestryID": 16,
 "balance": "101524292.93",
 "bloodLine": "Intaki",
 "bloodLineID": 8,
 "characterID": 123456,
 "charisma": 17,
 "cloneJumpDate": "2015-09-21 06:21:39",
 "cloneName": "Clone Grade Alpha",
 "cloneSkillPoints": 0,
 "cloneTypeID": 164,
 "corporationID": 123456,
 "corporationName": "Bob's Corporation",
 "created_at": "2015-11-21 14:56:03",
 "factionID": 0,
 "factionName": "",
 "freeRespecs": 0,
 "freeSkillPoints": 0,
 "gender": "Male",
 "homeStationID": 123456,
 "intelligence": 23,
 "jumpActivation": "2015-11-24 08:09:00",
 "jumpFatigue": "2015-11-24 09:00:32",
 "jumpLastUpdate": "2015-11-24 08:03:17",
 "lastRespecDate": "2012-12-13 22:50:46",
 "lastTimedRespec": "2012-12-13 22:50:46",
 "memory": 19,
 "name": "Sso",
 "perception": 23,
 "race": "Gallente",
 "remoteStationDate": "2014-12-15 08:11:21",
 "updated_at": "2015-11-25 14:17:38",
 "willpower": 17
}

Character Skills

		HTTP Verb: GET

		Endpoint: /api/v1/character/skills/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters skills.

		Sample Request:

http get http://localhost:8000/api/v1/character/skills/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "anchorable": 0,
 "anchored": 0,
 "basePrice": "2000000.0000",
 "capacity": 0,
 "categoryID": 16,
 "characterID": 123456,
 "created_at": "2015-11-21 14:56:03",
 "description": "Grants the Wing Commander the ability to pass on their bonuses to an additional Squadron per skill level, up to a maximum of 5 Squadrons. \r\n\r\nThis skill cannot be trained on Trial Accounts. ",
 "fittableNonSingleton": 0,
 "groupID": 258,
 "groupName": "Leadership",
 "iconID": null,
 "id": 28834,
 "level": 2,
 "marketGroupID": 370,
 "mass": 0,
 "portionSize": 1,
 "published": 1,
 "raceID": 4,
 "skillpoints": 11314,
 "soundID": null,
 "typeID": 11574,
 "typeName": "Wing Command",
 "updated_at": "2015-11-21 14:56:03",
 "useBasePrice": 1,
 "volume": 0.01
 }
]

Character Skill In Training

		HTTP Verb: GET

		Endpoint: /api/v1/character/skill-in-training/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a the current skill in training for a character.

		Sample Request:

http get http://localhost:8000/api/v1/character/skill-in-training/123456 Accept:application/json X-Token:123456

		Sample Response:

{
 "basePrice": "4000000.0000",
 "capacity": 0,
 "characterID": 123456,
 "created_at": "2015-11-21 14:57:04",
 "currentTQTime": "2015-11-24 12:28:36",
 "description": "Skill for the operation of Electronic Attack Frigates. \r\n\r\nThis skill cannot be trained on Trial Accounts.",
 "groupID": 257,
 "iconID": 33,
 "marketGroupID": 377,
 "mass": 0,
 "portionSize": 1,
 "published": 1,
 "raceID": null,
 "skillInTraining": 1,
 "soundID": null,
 "trainingDestinationSP": 181020,
 "trainingEndTime": "2015-11-25 15:25:33",
 "trainingStartSP": 33911,
 "trainingStartTime": "2015-11-22 16:21:32",
 "trainingToLevel": 4,
 "trainingTypeID": 28615,
 "typeID": 28615,
 "typeName": "Electronic Attack Ships",
 "updated_at": "2015-11-24 12:28:36",
 "volume": 0.01
}

Character Skill Queue

		HTTP Verb: GET

		Endpoint: /api/v1/character/skill-queue/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a the current queue for a character.

		Sample Request:

http get http://localhost:8000/api/v1/character/skill-queue/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "basePrice": "20000000.0000",
 "capacity": 0,
 "characterID": 123456,
 "created_at": "2015-11-24 12:28:38",
 "description": "Skill for operation of Interdictors.\r\n\r\nThis skill cannot be trained on Trial Accounts.",
 "endSP": 1280000,
 "endTime": "2016-06-28 01:02:56",
 "groupID": 257,
 "iconID": 33,
 "level": 5,
 "marketGroupID": 377,
 "mass": 0,
 "portionSize": 1,
 "published": 1,
 "queuePosition": 11,
 "raceID": null,
 "soundID": null,
 "startSP": 226275,
 "startTime": "2016-06-06 20:00:11",
 "typeID": 12098,
 "typeName": "Interdictors",
 "updated_at": "2015-11-24 12:28:38",
 "volume": 0.01
 }
]

Character Wallet Journal

		HTTP Verb: GET

		Endpoint: /api/v1/character/wallet-journal/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters wallet journal. Returns the last 1000 entries

		Sample Request:

http get http://localhost:8000/api/v1/character/wallet-journal/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "amount": "10249.55",
 "argID1": 123456,
 "argName1": "YI-8ZM",
 "balance": "34081939.17",
 "characterID": 123456,
 "created_at": "2015-11-27 12:22:24",
 "date": "2015-10-13 09:54:13",
 "hash": "3e2d590ad1113863ec687bc5f22b1159",
 "owner1TypeID": 2,
 "owner2TypeID": 1378,
 "ownerID1": 123456,
 "ownerID2": 123456,
 "ownerName1": "CONCORD",
 "ownerName2": "Bob",
 "reason": "23441:1,",
 "refID": 11765665857,
 "refTypeID": 85,
 "refTypeName": "Bounty Prizes",
 "taxAmount": "0.00",
 "taxReceiverID": 0,
 "updated_at": "2015-11-27 12:22:24"
 }
]

Character Wallet Transactions

		HTTP Verb: GET

		Endpoint: /api/v1/character/wallet-transactions/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters wallet transactions. Returns the last 1000 entries

		Sample Request:

http get http://localhost:8000/api/v1/character/wallet-transactions/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "clientID": 123456,
 "clientName": "Bob",
 "clientTypeID": 1383,
 "created_at": "2015-11-21 14:57:20",
 "hash": "c9d87c8dea4023f96e8305026340b196",
 "journalTransactionID": 11766105679,
 "price": "1249500.00",
 "quantity": 1,
 "stationID": 61000802,
 "stationName": "3V8-LJ IV - DOKDO-SUPREMACY",
 "transactionDateTime": "2015-10-13 13:49:33",
 "transactionFor": "personal",
 "transactionID": 4094239844,
 "transactionType": "buy",
 "typeID": 3244,
 "typeName": "Warp Disruptor II",
 "updated_at": "2015-11-21 14:57:20"
 }
]

Character Employment History

		HTTP Verb: GET

		Endpoint: /api/v1/character/employment-history/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters employment history.

		Sample Request:

http get http://localhost:8000/api/v1/character/employment-history/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "corporationID": 1000169,
 "corporationName": "Center for Advanced Studies",
 "created_at": "2015-11-21 14:17:39",
 "recordID": 3207893,
 "startDate": "2006-11-16 05:36:00",
 "updated_at": "2015-11-21 14:17:39"
 }
]

Character Implants

		HTTP Verb: GET

		Endpoint: /api/v1/character/implants/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters implants.

		Sample Request:

http get http://localhost:8000/api/v1/character/implants/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "created_at": "2015-11-25 14:17:38",
 "id": 7984,
 "typeID": 10221,
 "typeName": "Cybernetic Subprocessor - Standard",
 "updated_at": "2015-11-25 14:17:38"
 }
]

Character Jump Clones

		HTTP Verb: GET

		Endpoint: /api/v1/character/jump-clones/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters jump clones.

		Sample Request:

http get http://localhost:8000/api/v1/character/jump-clones/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "basePrice": null,
 "capacity": 0,
 "characterID": 123456,
 "cloneName": "",
 "created_at": "2015-11-25 14:17:38",
 "description": "",
 "groupID": 23,
 "iconID": 34,
 "jumpCloneID": 23063005,
 "locID": 61000802,
 "location": "3V8-LJ IV - DOKDO-SUPREMACY",
 "locationID": 61000802,
 "marketGroupID": null,
 "mass": 0,
 "portionSize": 1,
 "published": 0,
 "raceID": null,
 "soundID": null,
 "typeID": 164,
 "typeName": "Clone Grade Alpha",
 "updated_at": "2015-11-25 14:17:38",
 "volume": 1
 }
]

Character Account Info

		HTTP Verb: GET

		Endpoint: /api/v1/character/account-info/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters account information.

		Sample Request:

http get http://localhost:8000/api/v1/character/account-info/123456 Accept:application/json X-Token:123456

		Sample Response:

{
 "createDate": "2013-11-29 07:18:00",
 "created_at": "2015-11-21 14:17:37",
 "keyID": 123456,
 "logonCount": 2639,
 "logonMinutes": 242426,
 "paidUntil": "2015-12-19 12:49:41",
 "updated_at": "2015-11-25 14:17:26"
}

Character Mail

		HTTP Verb: GET

		Endpoint: /api/v1/character/mail/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters mail.

		Sample Request:

http get http://localhost:8000/api/v1/character/mail/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "body": "Stuff",
 "characterID": 123456,
 "created_at": "2015-11-21 14:20:40",
 "id": 8115,
 "messageID": 123456,
 "senderID": 123456,
 "senderName": "Bob",
 "sentDate": "2015-10-21 06:24:00",
 "title": "Stuff",
 "toCharacterIDs": "",
 "toCorpOrAllianceID": 123456,
 "toListID": 0,
 "updated_at": "2015-11-21 14:20:40"
 }
]

Character Notifications

		HTTP Verb: GET

		Endpoint: /api/v1/character/notifications/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters notifications.

		Sample Request:

http get http://localhost:8000/api/v1/character/notifications/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "created_at": "-0001-11-30 00:00:00",
 "desc": "Mercenary Invitation Accepted",
 "id": 128,
 "notificationID": 537637998,
 "read": 0,
 "senderID": 123456,
 "senderName": "Bob",
 "sentDate": "2015-11-18 08:34:00",
 "text": "applicationText: blah",
 "typeID": 128,
 "updated_at": "-0001-11-30 00:00:00"
 }
]

Character Planetary Interaction

		HTTP Verb: GET

		Endpoint: /api/v1/character/pi/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters planetary colonies.

		Sample Request:

http get http://localhost:8000/api/v1/character/pi/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "created_at": "2015-11-21 14:21:01",
 "lastUpdate": "2013-06-08 19:58:45",
 "numberOfPins": 4,
 "ownerID": 123456,
 "ownerName": "Bob",
 "planetID": 40318582,
 "planetName": "Ommare IX",
 "planetTypeID": 13,
 "planetTypeName": "Planet (Gas)",
 "solarSystemID": 30005027,
 "solarSystemName": "Ommare",
 "updated_at": "2015-11-21 14:21:01",
 "upgradeLevel": 3
 }
]

Character Standings

		HTTP Verb: GET

		Endpoint: /api/v1/character/standings/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters standings.

		Sample Request:

http get http://localhost:8000/api/v1/character/standings/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "created_at": "2015-11-21 14:57:08",
 "fromID": 500020,
 "fromName": "Serpentis",
 "id": 10459,
 "standing": -9.41,
 "type": "factions",
 "updated_at": "2015-11-21 14:57:08"
 }
]

Character Research

		HTTP Verb: GET

		Endpoint: /api/v1/character/research/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters research.

		Sample Request:

http get http://localhost:8000/api/v1/character/research/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "agentID": 3013751,
 "basePrice": "10000000.0000",
 "capacity": 0,
 "characterID": 123456,
 "created_at": "2015-11-21 14:57:02",
 "description": "Skill and knowledge of Plasma physics and its use in the development of advanced technology. \r\n\r\nUsed primarily in the research of particle blaster weaponry as well as plasma based missiles and smartbombs. \r\n\r\nAllows Plasma Physics research to be performed with the help of a research agent. 1% reduction in manufacturing time for all items requiring Plasma Physics per level.\r\n\r\nNeeded for all research and manufacturing operations on related blueprints.",
 "groupID": 270,
 "iconID": 33,
 "id": 47,
 "itemID": 3013751,
 "itemName": "Charie Porelotta",
 "marketGroupID": 375,
 "mass": 0,
 "pointsPerDay": 61.25,
 "portionSize": 1,
 "published": 1,
 "raceID": 4,
 "remainderPoints": 77302.81,
 "researchStartDate": "2013-12-13 00:19:43",
 "skillTypeID": 11441,
 "soundID": null,
 "typeID": 11441,
 "typeName": "Plasma Physics",
 "updated_at": "2015-11-24 12:28:33",
 "volume": 0.01
 }
]

Character Calendar Events

		HTTP Verb: GET

		Endpoint: /api/v1/character/calendar/{character_id}

		Parameters:

		character_id - The characterID for the query

		Description: Get a characters upcoming calendar events.

		Sample Request:

http get http://localhost:8000/api/v1/character/calendar/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "created_at": "2015-11-23 19:01:42",
 "duration": 60,
 "eventDate": "2015-11-24 17:00:00",
 "eventID": 1254322,
 "eventText": "To be tested:\r\nNew visual damage effects\r\n\r\nPlease refer to this news item for more info about this test.\r\n\r\nEasily connect to Singularity by using the new EVE Launcher (beta)!\r\n\r\nAll participants will receive a reward of two million free skill points on Singularity.",
 "eventTitle": "Mass test on Singularity",
 "id": 377,
 "importance": 0,
 "ownerID": 1,
 "ownerName": "EVE System",
 "ownerTypeID": 0,
 "response": "Undecided",
 "updated_at": "2015-11-23 19:01:42"
 }
]

Corporation Assets

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/assets/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations assets list.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/assets/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "anchorable": 0,
 "anchored": 0,
 "basePrice": null,
 "capacity": 0,
 "categoryID": 3,
 "corporationID": 123456,
 "created_at": "2015-11-24 16:31:54",
 "description": "",
 "fittableNonSingleton": 0,
 "flag": 83,
 "groupID": 16,
 "groupName": "Station Services",
 "iconID": null,
 "itemID": 228127261,
 "location": "Half VII - Moon 1 - CONCORD Bureau",
 "locationID": 66012455,
 "marketGroupID": null,
 "mass": 0,
 "portionSize": 1,
 "published": 0,
 "quantity": 1,
 "raceID": null,
 "rawQuantity": -1,
 "singleton": 1,
 "soundID": null,
 "typeID": 27,
 "typeName": "Office",
 "updated_at": "2015-11-24 16:31:54",
 "useBasePrice": 0,
 "volume": 1
 }
]

Corporation Assets by Location

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/assets-by-location/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations assets list grouped by locationID. This endpoint only returns assets that are in space.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/assets-by-location/123456 Accept:application/json X-Token:123456

		Sample Response:

{
 "123456": [
 {
 "basePrice": "200000000.0000",
 "capacity": 70000,
 "corporationID": 123456,
 "created_at": "2015-12-24 10:51:58",
 "description": "The Dread Guristas Control Tower is a special enhanced version of the Caldari control tower utilizing the latest in cutting edge design techniques.\r\n\r\nRacial Bonuses:\r\n25% bonus to Missile Battery Rate of Fire\r\n50% bonus to Missile Velocity\r\n-75% bonus to Electronic Warfare Battery Target Cycling Speed",
 "flag": 0,
 "groupID": 365,
 "iconID": null,
 "itemID": 123456,
 "itemName": "Dread Guristas Control Tower Medium",
 "locationID": 123456,
 "mapID": 123456,
 "mapName": "ABC",
 "marketGroupID": 478,
 "mass": 200000000,
 "portionSize": 1,
 "published": 1,
 "quantity": 1,
 "raceID": 1,
 "rawQuantity": -1,
 "singleton": 1,
 "soundID": null,
 "typeID": 27597,
 "typeName": "Dread Guristas Control Tower Medium",
 "updated_at": "2015-12-24 10:51:58",
 "volume": 4000,
 "x": -123456,
 "y": 123456,
 "z": -123456
 },
 {
 "basePrice": "50000000.0000",
 "capacity": 20000000,
 "corporationID": 123456,
 "created_at": "2015-12-24 10:51:58",
 "description": "This structure contains equipment needed to compress various ore and ice materials for easy transportation across the universe.\r\n\r\nThis array does not have a particular restriction on security level and may be anchored in Empire sovereign space.",
 "flag": 0,
 "groupID": 1282,
 "iconID": null,
 "itemID": 123456,
 "itemName": "Compression Array",
 "locationID": 123456,
 "mapID": 123456,
 "mapName": "ABC",
 "marketGroupID": 1921,
 "mass": 50000000,
 "portionSize": 1,
 "published": 1,
 "quantity": 1,
 "raceID": null,
 "rawQuantity": -1,
 "singleton": 1,
 "soundID": null,
 "typeID": 12239,
 "typeName": "Compression Array",
 "updated_at": "2015-12-24 10:51:58",
 "volume": 6000,
 "x": -123456,
 "y": 123456,
 "z": -123456
 }
]
}

Corporation Bookmarks

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/bookmarks/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations bookmarks.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/bookmarks/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "bookmarkID": 123456,
 "corporationID": 123456,
 "created": "2014-10-10 21:23:16",
 "created_at": "2015-12-20 14:25:03",
 "creatorID": 123456,
 "folderID": 123456,
 "folderName": "123",
 "id": 330,
 "itemID": 0,
 "locationID": 30002923,
 "mapID": 40185483,
 "mapName": "Thing",
 "memo": "A Memo",
 "note": "",
 "typeID": 5,
 "updated_at": "2015-12-20 14:25:03",
 "x": 26032436019.564,
 "y": -2848725274.3562,
 "z": 250866523571.45
 }
]

Corporation Contacts

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/assets/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations contacts list.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/contacts/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "contactID": 123456,
 "contactName": "Bob",
 "contactTypeID": 2,
 "corporationID": 123456,
 "created_at": "2015-11-24 16:31:56",
 "labelMask": 0,
 "standing": -5,
 "updated_at": "2015-11-24 16:31:56"
 }
]

Corporation Contracts

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/contracts/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations contracts list.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/contracts/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "acceptorID": 123456,
 "assigneeID": 123456,
 "availability": "Private",
 "buyout": "0.00",
 "collateral": "0.00",
 "contractID": 98168646,
 "corporationID": 123456,
 "created_at": "2015-11-21 14:19:05",
 "dateAccepted": "2015-10-28 22:57:33",
 "dateCompleted": "2015-10-28 22:57:33",
 "dateExpired": "2015-11-05 12:19:58",
 "dateIssued": "2015-10-22 12:19:58",
 "endStationID": 61000393,
 "endlocation": "UMI-KK VII - 2Dont relist in my Fing station",
 "forCorp": 0,
 "issuerCorpID": 123456,
 "issuerID": 123456,
 "numDays": 0,
 "price": "315000000.00",
 "reward": "0.00",
 "startStationID": 61000393,
 "startlocation": "UMI-KK VII - 2Dont relist in my Fing station",
 "status": "Completed",
 "title": "heavy missile cerb",
 "type": "ItemExchange",
 "updated_at": "2015-11-21 14:19:05",
 "volume": 92000
 }
]

Corporation Contracts

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/contracts/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations contracts list.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/contracts/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "acceptorID": 123456,
 "assigneeID": 123456,
 "availability": "Private",
 "buyout": "0.00",
 "collateral": "0.00",
 "contractID": 98168646,
 "corporationID": 123456,
 "created_at": "2015-11-21 14:19:05",
 "dateAccepted": "2015-10-28 22:57:33",
 "dateCompleted": "2015-10-28 22:57:33",
 "dateExpired": "2015-11-05 12:19:58",
 "dateIssued": "2015-10-22 12:19:58",
 "endStationID": 61000393,
 "endlocation": "UMI-KK VII - 2Dont relist in my Fing station",
 "forCorp": 0,
 "issuerCorpID": 123456,
 "issuerID": 123456,
 "numDays": 0,
 "price": "315000000.00",
 "reward": "0.00",
 "startStationID": 61000393,
 "startlocation": "UMI-KK VII - 2Dont relist in my Fing station",
 "status": "Completed",
 "title": "heavy missile cerb",
 "type": "ItemExchange",
 "updated_at": "2015-11-21 14:19:05",
 "volume": 92000
 }
]

Corporation Customs Offices

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/pocos/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations customs offices.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/pocos/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "allowAlliance": 0,
 "allowStandings": 0,
 "corporationID": 123456,
 "created_at": "2015-12-28 06:55:25",
 "id": 15,
 "itemID": 123456,
 "planetName": "Customs Office (ABC IV)",
 "planetTypeID": 2017,
 "planetTypeName": "Planet (Storm)",
 "reinforceHour": 0,
 "solarSystemID": 123456,
 "solarSystemName": "ABC",
 "standingLevel": -10,
 "taxRateAlliance": 0.04,
 "taxRateCorp": 0,
 "taxRateStandingBad": 0.5,
 "taxRateStandingGood": 0.06,
 "taxRateStandingHigh": 0.05,
 "taxRateStandingHorrible": 1,
 "taxRateStandingNeutral": 0.1,
 "updated_at": "2015-12-28 06:55:25"
 }
]

Corporation Industry

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/industry/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations industry jobs.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/industry/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "activityID": 8,
 "activityName": "Invention",
 "blueprintID": 1019085176157,
 "blueprintLocationID": 2147483647,
 "blueprintTypeID": 31056,
 "blueprintTypeName": "Medium Trimark Armor Pump I Blueprint",
 "completedCharacterID": 0,
 "completedDate": "0001-01-01 00:00:00",
 "corporationID": 98149539,
 "cost": 28719,
 "created_at": "2015-11-22 11:20:29",
 "description": "The process of creating a more advanced item based on an existing item",
 "endDate": "2015-11-21 05:23:02",
 "facilityID": 2147483647,
 "facilityName": null,
 "iconNo": "33_02",
 "installerID": 123456,
 "installerName": "Bob",
 "jobID": 280518524,
 "licensedRuns": 60,
 "outputLocationID": 2147483647,
 "pauseDate": "0001-01-01 00:00:00",
 "probability": 1,
 "productTypeID": 31060,
 "productTypeName": "Medium Trimark Armor Pump II Blueprint",
 "published": 1,
 "runs": 3,
 "solarSystemID": 30002691,
 "solarSystemName": "Crielere",
 "startDate": "2015-11-20 23:51:32",
 "stationID": 2147483647,
 "status": 1,
 "successfulRuns": 0,
 "teamID": 0,
 "timeInSeconds": 19890,
 "updated_at": "2015-11-23 19:15:33"
 }
]

Corporation Killmails

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/killmails/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations killmails.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/killmails/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "allianceID": 123456,
 "allianceName": "Bob Alliance",
 "basePrice": null,
 "capacity": 430,
 "celestialIndex": null,
 "characterID": 123456,
 "characterName": "Bob",
 "constellationID": 20000124,
 "corporationID": 123456,
 "corporationName": "Bob Corp",
 "created_at": "2015-11-27 13:54:58",
 "damageTaken": 3956,
 "description": "Released in YC 117 as the result of the first Republic Fleet joint research project to include engineers from all seven Minmatar tribes, the Svipul is a powerful symbol of inter-tribal unity for many Republic citizens.\r\n\r\nAlthough the contributions of engineers from the Nefantar and Starkmanir tribes were fairly minor, a large delegation from the Vo-Lakat Thukker caravan and donations from Republic loyalist capsuleers across the cluster were invaluable to the development of this incredibly adaptable warship.",
 "factionID": 0,
 "factionName": "",
 "groupID": 5,
 "iconID": null,
 "itemID": 30000848,
 "itemName": "M-OEE8",
 "killID": 123456,
 "killTime": "2015-11-25 11:13:53",
 "marketGroupID": 1953,
 "mass": 1500000,
 "moonID": 0,
 "orbitID": null,
 "orbitIndex": null,
 "ownerID": 123456,
 "portionSize": 1,
 "published": 1,
 "raceID": 2,
 "radius": 4145289179056,
 "regionID": 10000010,
 "security": -0.218329,
 "shipTypeID": 34562,
 "solarSystemID": null,
 "soundID": 20074,
 "typeID": 5,
 "typeName": "Svipul",
 "updated_at": "2015-11-27 13:54:58",
 "victimID": 123456,
 "volume": 47000,
 "x": -1.4759869943375e+17,
 "y": 7.9788702592936e+16,
 "z": 2.0063317959704e+17
 }
]

Corporation Market Orders

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/market-orders/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations market orders.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/market-orders/123456 Accept:application/json X-Token:123456

		Sample Response:

TBA

Corporation Member Security

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/member-security/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations member security roles.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/member-security/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "characterName": "Bob",
 "corporationID": 123456,
 "created_at": "2015-11-27 14:01:18",
 "roleID": 1,
 "roleName": "roleDirector",
 "roleType": "grantableRolesAtOther",
 "updated_at": "2015-11-27 14:01:18"
 }
]

Corporation Member Security Logs

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/member-security-logs/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations member security roles changelog.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/member-security-logs/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "changeTime": "2015-10-25 13:19:00",
 "characterID": 123456,
 "characterName": "Bob",
 "corporationID": 123456,
 "created_at": "2015-11-21 14:19:43",
 "hash": "cce3b9e3e0da5756939cf06d5ab923bd",
 "issuerID": 123456,
 "issuerName": "Bob",
 "newRoles": "[{\"8192\":\"roleHangarCanTake1\"},{\"1048576\":\"roleHangarCanQuery1\"},{\"4398046511104\":\"roleContainerCanTake1\"}]",
 "oldRoles": "[]",
 "roleLocationType": "rolesAtBase",
 "updated_at": "2015-11-21 14:19:43"
 }
]

Corporation Member Security Titles

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/member-security-titles/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations member security titles assignments.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/member-security-titles/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "characterID": 123456,
 "characterName": "Bob",
 "corporationID": 123456,
 "created_at": "2015-11-27 14:01:18",
 "titleID": 16384,
 "titleName": "Member",
 "updated_at": "2015-11-27 14:01:18"
 }
]

Corporation Member Tracking

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/member-tracking/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations member tracking data.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/member-tracking/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "base": "",
 "baseID": 0,
 "characterID": 123456,
 "corporationID": 123456,
 "created_at": "2015-11-21 14:19:41",
 "enabled": 1,
 "grantableRoles": "0",
 "id": 16,
 "location": "M-OEE8 XI - VOTE THE JUDGE FOR C S M XI",
 "locationID": 61000249,
 "logoffDateTime": "2015-08-09 07:16:05",
 "logonDateTime": "2015-08-09 06:56:16",
 "name": "123456",
 "roles": "1044837312573210624",
 "shipType": "Unknown Type",
 "shipTypeID": -1,
 "startDateTime": "2015-01-23 19:58:00",
 "title": "",
 "updated_at": "2015-11-21 14:19:41"
 }
]

Corporation Sheet

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/sheet/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations sheet.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/sheet/123456 Accept:application/json X-Token:123456

		Sample Response:

{
 "allianceID": 123456,
 "allianceName": "Bob Alliance",
 "ceoID": 91279102,
 "ceoName": "Bob",
 "color1": 674,
 "color2": 674,
 "color3": 680,
 "corporationID": 123456,
 "corporationName": "Bob Corp",
 "created_at": "2015-11-21 14:19:14",
 "description": "",
 "factionID": 0,
 "graphicID": 0,
 "memberCount": 71,
 "memberLimit": 2300,
 "shape1": 568,
 "shape2": 576,
 "shape3": 513,
 "shares": 1000,
 "stationID": 60003754,
 "stationName": "Perimeter II - Moon 1 - Caldari Navy Assembly Plant",
 "taxRate": "0.00",
 "ticker": "BOB.",
 "updated_at": "2015-11-27 13:54:51",
 "url": ""
}

Corporation Standings

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/standings/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations standings.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/standings/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "corporationID": 123456,
 "created_at": "2015-11-25 14:27:33",
 "fromID": 3018426,
 "fromName": "Poreg Murchor",
 "id": 3455,
 "standing": 2.15,
 "type": "agents",
 "updated_at": "2015-11-25 14:27:33"
 }
]

Corporation Starbases

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/starbases/{corporation_id}/{starbase_id?}

		Parameters:

		corporation_id - The corporationID for the query

		starbase_id - An optional starbaseID to get details for

		Description: Get a corporations starbases.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/starbases/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "allowAllianceMembers": 1,
 "allowCorporationMembers": 1,
 "baseFuelUsage": 40,
 "baseStrontUsage": 400,
 "fuelBaySize": 140000,
 "fuelBlocks": 4370,
 "inSovSystem": 1,
 "itemID": 123456,
 "mapName": "ABC",
 "mapSecurity": -0.640046,
 "moonID": 123456,
 "moonName": "ABC",
 "onAggression": 0,
 "onCorporationWar": 1,
 "onlineTimeStamp": "2015-12-20 21:47:33",
 "siloCapacityBonus": null,
 "solarSystemName": "ABC",
 "starbaseCharter": 0,
 "starbaseName": "Caldari Control Tower",
 "starbaseTypeID": 16213,
 "starbaseTypeName": "Caldari Control Tower",
 "state": 4,
 "stateTimeStamp": "2015-12-24 10:47:37",
 "strontBaySize": 50000,
 "strontium": 0,
 "updated_at": "2015-12-24 10:50:54",
 "useStandingsFrom": 12345
 }
]

Corporation Wallet Divisions

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/wallet-divisions/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations wallet divisions.

		Sample Request:

http get http://localhost:8000/api/v1/corporation/wallet-divisions/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "accountKey": 10000,
 "corporationID": 87812345623749,
 "created_at": "2015-11-21 14:19:14",
 "description": "Mercenary Wallet Division",
 "id": 8,
 "updated_at": "2015-11-21 14:19:14"
 }
]

Corporation Wallet Journal

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/wallet-journal/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations wallet journal. Returns the last 1000 entries

		Sample Request:

http get http://localhost:8000/api/v1/corporation/wallet-journal/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "accountKey": 1000,
 "amount": "1363368.75",
 "argID1": 123456,
 "argName1": "X-CFN6",
 "balance": "1.40",
 "corporationID": 123456,
 "created_at": "2015-11-27 12:22:24",
 "date": "2015-11-17 19:28:54",
 "hash": "5cc3cf718cb50be07bd7909ad13ed62e",
 "owner1TypeID": 2,
 "owner2TypeID": 1375,
 "ownerID1": 123456,
 "ownerID2": 123456,
 "ownerName1": "Bob",
 "ownerName2": "Bob",
 "reason": "24001:2,24014:1,24015:1,24016:1,24017:1,24018:1,24095:1,24149:5,24150:6,",
 "refID": 11902387979,
 "refTypeID": 85,
 "refTypeName": "Bounty Prizes",
 "updated_at": "2015-11-27 12:22:24"
 }
]

Corporation Wallet Transactions

		HTTP Verb: GET

		Endpoint: /api/v1/corporation/wallet-transactions/{corporation_id}

		Parameters:

		corporation_id - The corporationID for the query

		Description: Get a corporations wallet transactions. Returns the last 1000 entries

		Sample Request:

http get http://localhost:8000/api/v1/corporation/wallet-transactions/123456 Accept:application/json X-Token:123456

		Sample Response:

[
 {
 "accountKey": 1006,
 "characterID": 123456,
 "characterName": "Bob",
 "clientID": 123456,
 "clientName": "Core Industry CRY",
 "clientTypeID": 1376,
 "corporationID": 123456,
 "created_at": "2015-11-21 14:20:13",
 "hash": "cb72c321ce34cf8a2f232849caac9a29",
 "journalTransactionID": 11799102551,
 "price": "23250000.00",
 "quantity": 1,
 "stationID": 60014890,
 "stationName": "D7-ZAC VIII - Moon 1 - D7-ZAC CO2 Stronghold",
 "transactionDateTime": "2015-10-22 10:00:25",
 "transactionFor": "corporation",
 "transactionID": 4103106946,
 "transactionType": "buy",
 "typeID": 31628,
 "typeName": "Medium Warhead Calefaction Catalyst II",
 "updated_at": "2015-11-21 14:20:13"
 }
]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

reporting_bugs.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

So, the inevitable happened. Something broke! Its ok. The first thing to do is to relax, and prepare some info for a bug report.

the more info, the better

In order to best understand the bug, we need as much info as possible about your environment. For that, you can run the following command (from your SeAT directory), and copy / paste the output as part of your bug report:

php artisan seat:admin:diagnose

log files

Log files are a fantastic resource. Check out the laravel log for any Exception type errors, and add them to your bug report. The log file is located (relative to where you installed SeAT) at:

storage/logs/laravel.log

screenshots and debug mode

Screenshots may also help, so don’t be shy to take some and attach them to your bug report! If you flip your installation into debug mode then it may be possible to capture the error that is occurring via a screenshot.

To flip to debug mode, open your applications .env file, and set DEBUG=false to DEBUG=true. See: https://github.com/eveseat/seat/blob/master/.env.example#L2

report the bug

Finally, to report the bug, head over to https://github.com/eveseat/seat/issues and click on New Issue.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

setup_guides/upgrade.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

This guide attempts to document the SeAT upgrade procedure. As with anything, it is a very good idea to have backups ready before attempting any upgrades. In the case of SeAT, the most important component that needs to be backed up is the SeAT database. In short, something as simple as mysqldump -uroot -p seat > backup.sql should be perfectly fine. Should something go wrong, then you can simply re-install SeAT, restore the database and you should be good to go.

getting started

Upgrades themselves should be relatively simple. All we really need to do is upgrade the SeAT packages and run any new migrations.

upgrading SeAT

		Ensure that you are in the path where you installed. By default this should be /var/www/seat.

		Put your application into maintenance mode. This will ensure that no request from the outside will hit your applications logic, and also help you perform an upgrade uninterrupted. Do this with:

php artisan down

		Its a good thing to update composer itself. This is not a hard requirement, but definitely recommended. Do this with:

composer self-update

		The next thing to do is get the latest SeAT packages. The below example adds the --no-dev argument as these packages are generally not needed in production. Upgrade the packages with:

composer update --no-dev

		With the packages upgraded, we can now publish any new migrations/assets/configs. This can be done with:

php artisan vendor:publish --force

		Once the needed files are published, run any new/outstanding migrations with:

php artisan migrate

		With the migrations done, run the schedule seeder to update any schedule changes with:

php artisan db:seed --class=Seat\\Services\\database\\seeds\\ScheduleSeeder

		Finally, we can simply bring our application back out of maintenance mode with:

php artisan up

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configuration/web.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Package: eveseat/webConfig: here [https://github.com/eveseat/web/tree/master/src/Config]

File: web.config.php

return [
 'max_access_mask' => 1073741823,
 'queue_status_update_time' => 10 * 1000,
];

Options

		max_access_maskThe current maximum possible access_mask

		queue_status_update_timeAmount of seconds (calculated as seconds x 1000) to wait before requesting a queue status update.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configuration/overview.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

This page aims to give a brief overview of how configuration is handled in SeAT and its packages. To give some perspective, we have to have a quick look at how packages are built and bootstrapped.

quick-n-dirty-package summary

All of SeAT’s core internals are built as packages. This means, every package has a service provider. All a service provider really is, is a class with 2 methods ie: handle() and register(). When a service provider is bootstrapped into the application, these 2 methods are called at some stage.

It is in these methods that we tell the Laravel framework more about our package. Amongst many things that we can tell it, one of them is configuration related. All we really telling the application is where the configuration file is, and under which namespace does it live. Another important fact is that SeAT package configurations are added with the mergeConfigFrom() method. This means, you can override the defaults in your installation without worrying about breaking the package itself.

overriding configuration

Lets take a look at a sample package configuration file: The eveseat/web package [https://github.com/eveseat/web/blob/master/src/Config/web.config.php] for example. At the time of this writing, it has 2 configuration options. The first being a version, the next being max_access_mask. When this package is installed, this configuration file will live somewhere deep inside your vendor folder. Changing the value there is not impossible, but it will be lost with the next package upgrade. The better method will be to override the change locally, inside you config/ folder here [https://github.com/eveseat/seat/tree/master/config].

an example, changing max_access_mask

To start, create the file web.config.php inside the config folder. Next, we add the contents in the file to return an array, specifying the max_access_mask key and its new value. The file would look something like this:

<?php

// File: config/web.config.php

return [
 'max_access_mask' => 123456
];

Thats it. The configuration should now have been overridden.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configuration/eveapi.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Package: eveseat/eveapiConfig: here [https://github.com/eveseat/eveapi/tree/master/src/Config]

File: eveapi.config.php

return [

 'pheal' => [
 'cache_path' => storage_path() . '/app/pheal/',
 'log_file' => storage_path('logs/pheal.log')
],

 'cache_keys' => [
 'down' => 'eve_api_down',
 'down_until' => 'eve_api_down_until',
 'api_error_count' => 'eve_api_error_count',
 'connection_error_count' => 'eve_api_conn_error_count'
],

 'limits' => [
 'eveapi_errors' => 150,
 'connection_errors' => 15
],

 'disabled_workers' => [
 'api' => [],
 'character' => [
 // Seat\Eveapi\Api\Character\AccountBalance::class,
],
 'corporation' => [],
 'eve' => [],
 'map' => [],
 'server' => []
]
];

Options

		pheal.cache_pathSpecify the path to use for the Pheal XML cache. This cache is used to write the downloaded XML files for later retrieval if the cached_until timers have not yet expired.

		pheal.log_fileSpecify the log file to write Pheal access and error logs to.

		cache_keys.downThe cache key to use when referring to the EVE API Down status

		cache_keys.down_untilThe cache key to use when updating the down until time for the EVE API.

		cache_keys.api_error_countThe cache key to use when counting the number of eve api errors that have occurred.

		cache_keys.connection_error_countThe cache key to use when counting the number of connection errors that have occurred.

		limits.eveapi_errorsThe maximum number of EVE API errors that may occur before the EVE API will be considered down for a while.

		limits.connection_errorsThe maximum number of connections errors that may occur to the EVE API before it will be considered down for a while.

For a reference of which workers are available for the next disabled_workers section, see the definition here [https://github.com/eveseat/eveapi/blob/master/src/Config/eveapi.workers.php]

		disabled_workers.apiAn array of Seat\Eveapi\Api\Api worker classes that should not be run.

		disabled_workers.characterAn array of Seat\Eveapi\Api\Character worker classes that should not be run.

		disabled_workers.corporationAn array of Seat\Eveapi\Api\Corporation worker classes that should not be run.

		disabled_workers.eveAn array of Seat\Eveapi\Api\Eve worker classes that should not be run.

		disabled_workers.mapAn array of Seat\Eveapi\Api\Map worker classes that should not be run.

		disabled_workers.serverAn array of Seat\Eveapi\Api\Server worker classes that should not be run.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

configuration/api.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Package: eveseat/apiConfig: here [https://github.com/eveseat/api/tree/master/src/Config]

File: api.config.php

return [
 'log_requests' => true
];

Options

		log_requestsSpecify whether requests to the SeAT API should be logged.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

community_packages.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Below is a list of packages contributed by the community. These packages normally follow the same installation procedure, however, its best you consult the documentation of the package itself in case there is anything special you need to get it working.

generic package installation

Packages will normally come in the form of a composer package that you need to include in your SeAT install, as well as a Service Provider that you need to bootstrap. So, generically speaking, installing a package will mean that you:

		Require the package via composer:

composer require <package vendor>/<package-name>

		Bootstrap the packages service provider here [https://github.com/eveseat/seat/blob/master/config/app.php#L164].

Installing packages like this will ensure that none of the core SeAT packages are affected and you should be free to upgrade SeAT core at anytime.

package list

		freedenizen/eveseat-notes [https://github.com/freedenizen/eveseat-notes]a notes addon for seat 1.x

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configuration/other.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

SeAT sources information about the SDE from a json file hosted here [https://github.com/eveseat/resources/blob/master/sde.json]. It may happen that the SDE gets updated but the the json resource has not yet been updated. For this reason, its possible to specify the version to get based on what is available on https://www.fuzzwork.co.uk/dump/.

###overriding the resources json
Check the version of SDE dumps available on https://www.fuzzwork.co.uk/dump/. At the time of this writing, frostline-1.0-116241 was the latest. Once you have the version string ready, open the .env configuration file and add a key as follows:

SDE_VERSION=frostline-1.0-116241

When running the SDE updater, specify the --local parameter to source the version string from the configuration file:

$ php artisan eve:update-sde --local

notes

By default, SeAT automatically updates the SDE every month [https://github.com/eveseat/services/blob/master/src/database/seeds/ScheduleSeeder.php#L50]. You may want to login as an administrator and remove the schedule to update it monthly if you have overridden the default.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

contact.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Need help? Use these channels to get support!

Slack

We are on the eve-seat [https://eve-seat.slack.com/] slack team.It seems like most of the activity happens here, and has a really nice github bot too :)Get invites here [https://eveseat-slack.herokuapp.com] [image: Slack Status] [https://eveseat-slack.herokuapp.com/]

IRC

The #eveseat channel on irc.coldfront.net is where its at.If you just want to come say hi, you can use the link below to quick join.[image: Visit our IRC channel] [https://kiwiirc.com/client/irc.coldfront.net/?nick=seatuser|?#eveseat]

EVE Online Forum Thread

Track the conversation on the eveonline forums here:
https://forums.eveonline.com/default.aspx?g=posts&t=460658&find=unread

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

configuration/console.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

Package: eveseat/consoleConfig: here [https://github.com/eveseat/console/tree/master/src/Config]

File: console.config.php

return [

];

Options

 © Copyright 2016.
 Created using Sphinx 1.3.5.

email/mailgun.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

introduction

SeAT requires email to be setup to allow for things like password reminders and notifications to be sent. This guide will attempt to describe how to go about setting up your email using the mailgun [https://www.mailgun.com/] service. Though mailgun is a commercial service, you get to send 10k emails for free per month. It also provides epic stats for you to track emails with etc.

the config

As with anything Laravel, the config for mailgun will live in your installs .env file. To use the Mailgun driver, first set the MAIL_DRIVER option in your .env configuration file to mailgun. Next, we will add two options to specify details about our mailgun account.

// File: .env

MAILGUN_DOMAIN=whateveritis
MAILGUN_SECRET=anotherthing

To find out the values you need to populate, login to your mailgun account and browse to the domains [https://mailgun.com/app/domains] section. Pick the applicable domain name. The screen you will see should looks something similar to this:

[image: Mailgun Domain]

The big title (sandbox1XXXXXXX in my case) is the domain name, and the field titled API Key is the MAILGUN_SECRET.

Done!. To test, you can send yourself a password reset email.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

changelogs/services.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

services change logs

Generated with: git log --oneline --decorate

1.0.14

e4d521b (tag: 1.0.14) Version Bump
96c9fb5 Update copyright
c9cd51c Ensure that people.view role is enforced
2f1e9e3 Add methods for People groups
f7bb649 Handle some unicode characters for cases like eveseat/seat#13
0ad1ffa Code style fix

1.0.13

e33ed92 (tag: 1.0.13) Version Bump
582d719 Fix eveseat/seat#28

1.0.12

c3d9aaf (tag: 1.0.12) Version Bump
bee194f Add method to get corporation customs offices

1.0.11

bb1cd45 (tag: 1.0.11) Version Bump
0d139b2 Allow starbase details to be loaded by starbase_id

1.0.10

e985e13 (tag: 1.0.10) Version Bump
9e75900 Revert version setting via ~

1.0.9

cd3878c (tag: 1.0.9) Version Bump
a0c30a9 Version Set via ^

1.0.8

ebd21c7 (tag: 1.0.8) Version Bump
e7a055d Set composer versions using ~
08a50d8 Determine capacity bonus with tower
aa51300 Temporarily ignore nested groups
5ff8e0a Add methods to get starbase related data
63e9be9 Return paginated results

1.0.7

5734db7 (tag: 1.0.7) Version Bump
e221f72 Add method to get corp bookmarks
30699d3 Add method to get character bookmarks
afd7cba Add method to get character chat channels
6ca677b Second attempt at fixing eveseat/seat#7

1.0.6

aa17e7d (tag: 1.0.6) Version Bump
691dc5c Prevent dupe or corp chars from showing
1b93322 Prevent duplicate entries in corp member tracking

1.0.5

af4abdc (tag: 1.0.5) Version Bump
cda2f34 Default to english language
ea02832 Add method to get mail timeline
28b0933 Suppress errors incase the html is invalid
012e0e6 Add method to get an email for a character

1.0.4

d087604 (tag: 1.0.4) Version Bump
d3d6bd0 Add an admin contact setting
a5b4135 Order jobs by date

1.0.3

e1c75bb (tag: 1.0.3) Version Bump

1.0.2

717f9fb (tag: 1.0.2) Add server status method
f2172dc Update README.md
8b65137 Add default MFA setting

1.0.1

f32b199 (tag: 1.0.1) Version Bump
9a2fe0f Allow to get/set settings for another user by id
71504e9 Add default for email notifications
8109b5c Add service for database stored schedules
d4afc21 Ensure we pass integers to the helper

1.0.0

300cdde (tag: 1.0.0) Update required eveseat package version
526493c Style Fixes and Version Bump
9ded93d Add registration options
e5348f0 Update to support new settings features
f601b60 Move options scope to public
dcbd238 Add a setting() helper and provide some defaults
82115c2 Add a settings service
c72cd8a Add methods to query corp security info
5371848 Add method to get corp member tracking

1.0-pre-alpha

93958d6 (tag: 1.0-pre-alpha) Update README
666036a Add method to get corp wallet transactions
bcb36f7 Fix filter rule reference
5e579ec Add methods to get standings and wallet journal
91163b3 Fix a join
bab5d59 Add method to get corp market orders
6b2734d Add method to get corp killmails
513c1e5 Add method to get corp industry jobs
eb0b9d7 Add method to get corp contracts
3b2e7eb Add methods to get corp contacts & labels
057e1d4 Add method to get corp assets
907870a Add methods for corp summary pages
c4a4977 Small refactor to remove attributes instead of making them blank
0b1ee7a Add method to cleanup CCP produced HTML
11e55c6 Add method to list corporations
3a76e64 Fix typo
02eea36 Add ability to just dump query and continue load
c71ca03 Add method to get character standings
be1c6db Add method to get character research info
7d0105c Add method to get character pi
6ea00fb Add methods to get character market orders
18e3580 Add method comments
4daabd8 Add method to get character industry
196e968 Add method to get contract information
3ad8de1 Add method to get killmails
2c5ca99 Lock type image to max 32/64px
0071fa7 Add character contact lists and calendar repositories
11ebe15 Add character notifications repo
52807cf Add the Notification Types Seeder
6560b34 Add rules to ensure columns can not be tampered with
bb32b1b Add Character Assets services
cc493be Style fixes
0e56275 Add Mail Service for Characters
6fa7631 Add Character Wallet Transactions Service
bd1b364 Add Wallet Journal Services
22d7e6f Add option to auto-detect image types
f899060 Rename method from Character->Eve
d3f6fb7 Add more methods for character information
46910d1 Fix a table ambiguity problem for characterID
33463b9 Add more repository methods
f75cd7c Add Services for Character Skills
d35099a Add security repository
9bcb126 Add more methods for character info
71e3864 Add a number formatter
55a29d2 Add repositories to get character information
04df3b9 Add a query builder filterable helper
0fdea02 Add SQL debug helper
6e32c77 Add Respository to support the Queue
54cda05 Set extention correctly based on image type
4172206 Add a service to prepare lazy loaded tags
89dfbb2 Add user modifiction services
30bdace Add repositories used in eveseat/web acl
a8ff125 Update to match eveseat/eveapi Model refactor
4a69ce0 Add Config file
ea84fb0 Add Queue Data Source
2f60e1d Add EveApiKeyData service
467fb42 Update badges
5779eff Prepare repository for packagist
a46f437 Initial commit

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

changelogs/notifications.html

 Navigation

 		
 index

 		seat-docs latest documentation »

 [image: SeAT]

notifications change logs

Generated with: git log --oneline --decorate

1.0.4

c115945 (tag: 1.0.4) Version Bump
7b0cd6f Update copyright
23e89b1 Code style fix

1.0.3

d47b267 (tag: 1.0.3) Version Bump
e0a5b53 Specify Versions with ~

1.0.2

aedd78a (tag: 1.0.2) Version Bump
a2e7ddf Add suport for lacalization

1.0.1

6594754 (tag: 1.0.1) Version Bump
ccf7596 Update README.md
70994aa Add more complete message

1.0.0

15b1175 (tag: 1.0.0) Add views to see notifications
fd76941 Fix typo
a5f93e7 Update README
c22a837 First iteration of the notification package
032bebf first commit

 © Copyright 2016.
 Created using Sphinx 1.3.5.

